/*
Essential Java 3D Fast
Ian Palmer
Publisher: Springer-Verlag
ISBN: 1-85233-394-4
*/
import java.awt.BorderLayout;
import java.awt.Button;
import java.awt.Frame;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.media.j3d.AmbientLight;
import javax.media.j3d.Appearance;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.DirectionalLight;
import javax.media.j3d.IndexedQuadArray;
import javax.media.j3d.Locale;
import javax.media.j3d.Material;
import javax.media.j3d.Node;
import javax.media.j3d.PhysicalBody;
import javax.media.j3d.PhysicalEnvironment;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.View;
import javax.media.j3d.ViewPlatform;
import javax.media.j3d.VirtualUniverse;
import javax.vecmath.AxisAngle4d;
import javax.vecmath.Color3f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3f;
/**
* This builds a simple class using the an indexed quadrilateral array. This
* demonstrates the use of the IndexedQuadArray class. It defines both the
* vertices and the normals of the shape such that each vertex has only one
* normal and it appears to have smooth edges.
*
* @author I.J.Palmer
* @version 1.0
*/
public class SimpleIndexedQuadSmooth extends Frame implements ActionListener {
protected Canvas3D myCanvas3D = new Canvas3D(null);
protected Button myButton = new Button("Exit");
/**
* This function builds the view branch of the scene graph. It creates a
* branch group and then creates the necessary view elements to give a
* useful view of our content.
*
* @param c
* Canvas3D that will display the view
* @return BranchGroup that is the root of the view elements
*/
protected BranchGroup buildViewBranch(Canvas3D c) {
BranchGroup viewBranch = new BranchGroup();
Transform3D viewXfm = new Transform3D();
viewXfm.set(new Vector3f(0.0f, 0.0f, 5.0f));
TransformGroup viewXfmGroup = new TransformGroup(viewXfm);
ViewPlatform myViewPlatform = new ViewPlatform();
PhysicalBody myBody = new PhysicalBody();
PhysicalEnvironment myEnvironment = new PhysicalEnvironment();
viewXfmGroup.addChild(myViewPlatform);
viewBranch.addChild(viewXfmGroup);
View myView = new View();
myView.addCanvas3D(c);
myView.attachViewPlatform(myViewPlatform);
myView.setPhysicalBody(myBody);
myView.setPhysicalEnvironment(myEnvironment);
return viewBranch;
}
/**
* Add some lights so that we can illuminate the scene. This adds one
* ambient light to bring up the overall lighting level and one directional
* shape to show the shape of the objects in the scene.
*
* @param b
* BranchGroup that the lights are to be added to.
*/
protected void addLights(BranchGroup b) {
//Create a bounding sphere to act as the active bounds
//of the lights
BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
100.0);
//Create the colours and directions
Color3f lightColour = new Color3f(1.0f, 1.0f, 1.0f);
Vector3f lightDir = new Vector3f(-1.0f, -1.0f, -1.0f);
Color3f ambientColour = new Color3f(0.2f, 0.2f, 0.2f);
//Create the lights
AmbientLight ambientLight = new AmbientLight(ambientColour);
ambientLight.setInfluencingBounds(bounds);
DirectionalLight directionalLight = new DirectionalLight(lightColour,
lightDir);
directionalLight.setInfluencingBounds(bounds);
//Add the lights to the branch
b.addChild(ambientLight);
b.addChild(directionalLight);
}
/**
* This builds the content branch of our scene graph. It uses the buildShape
* function to create the actual shape, adding to to the transform group so
* that the shape is slightly tilted to reveal its 3D shape. It also uses
* the addLights function to add some lights to the scene.
*
* @param shape
* Node that represents the geometry for the content
* @return BranchGroup that is the root of the content branch
*/
protected BranchGroup buildContentBranch(Node shape) {
BranchGroup contentBranch = new BranchGroup();
Transform3D rotateCube = new Transform3D();
rotateCube.set(new AxisAngle4d(1.0, 1.0, 0.0, Math.PI / 4.0));
TransformGroup rotationGroup = new TransformGroup(rotateCube);
contentBranch.addChild(rotationGroup);
rotationGroup.addChild(shape);
addLights(contentBranch);
return contentBranch;
}
/**
* Build a cube from an IndexedQuadArray. This method creates the vertices
* as a set of eight points and the normals as a set of six vectors (one for
* each face). The data is then defined such that each vertex has a
* different normal associated with it when it is being used for a different
* face.
*
* @return Node that is the shape.
*/
protected Node buildShape() {
//The shape. The constructor specifies 8 vertices, that both
//vertices and normals are to be defined and that there are
//24 normals to be specified (4 for each of the 6 faces).
IndexedQuadArray indexedCube = new IndexedQuadArray(8,
IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24);
//The vertex coordinates defined as an array of points.
Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f),
new Point3f(-1.0f, 1.0f, 1.0f),
new Point3f(-1.0f, -1.0f, 1.0f),
new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f),
new Point3f(-1.0f, 1.0f, -1.0f),
new Point3f(-1.0f, -1.0f, -1.0f),
new Point3f(1.0f, -1.0f, -1.0f) };
//The vertex normals defined as an array of vectors
Vector3f[] normals = { new Vector3f(1.0f, 1.0f, 1.0f),
new Vector3f(-1.0f, 1.0f, 1.0f),
new Vector3f(-1.0f, -1.0f, 1.0f),
new Vector3f(1.0f, -1.0f, 1.0f),
new Vector3f(1.0f, 1.0f, -1.0f),
new Vector3f(-1.0f, 1.0f, -1.0f),
new Vector3f(-1.0f, -1.0f, -1.0f),
new Vector3f(1.0f, -1.0f, -1.0f) };
//Define the indices used to reference vertex array
int coordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1,
0, 4, 5, 1, 6, 7, 3, 2 };
//Define the indices used to reference normal array
int normalIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1,
0, 4, 5, 1, 6, 7, 3, 2 };
//Set the data
indexedCube.setCoordinates(0, cubeCoordinates);
indexedCube.setNormals(0, normals);
indexedCube.setCoordinateIndices(0, coordIndices);
indexedCube.setNormalIndices(0, normalIndices);
//Define an appearance for the shape
Appearance app = new Appearance();
Color3f ambientColour = new Color3f(1.0f, 0.0f, 0.0f);
Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f);
Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f);
Color3f diffuseColour = new Color3f(1.0f, 0.0f, 0.0f);
float shininess = 20.0f;
app.setMaterial(new Material(ambientColour, emissiveColour,
diffuseColour, specularColour, shininess));
//Create and return the shape
return new Shape3D(indexedCube, app);
}
/**
* Handles the exit button action to quit the program.
*/
public void actionPerformed(ActionEvent e) {
dispose();
System.exit(0);
}
public SimpleIndexedQuadSmooth() {
VirtualUniverse myUniverse = new VirtualUniverse();
Locale myLocale = new Locale(myUniverse);
myLocale.addBranchGraph(buildViewBranch(myCanvas3D));
myLocale.addBranchGraph(buildContentBranch(buildShape()));
setTitle("SimpleIndexedQuadSmooth");
setSize(400, 400);
setLayout(new BorderLayout());
add("Center", myCanvas3D);
add("South", myButton);
myButton.addActionListener(this);
setVisible(true);
}
public static void main(String[] args) {
SimpleIndexedQuadSmooth siqs = new SimpleIndexedQuadSmooth();
}
}