//
//CLASS
//ExSound - illustrate the use of sounds
//
//LESSON
//Add a PointSound and a BackgroundSound to an environment.
//
//AUTHOR
//David R. Nadeau / San Diego Supercomputer Center
//
import java.applet.Applet;
import java.awt.AWTEvent;
import java.awt.BorderLayout;
import java.awt.CheckboxMenuItem;
import java.awt.Component;
import java.awt.Cursor;
import java.awt.Frame;
import java.awt.Menu;
import java.awt.MenuBar;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.InputEvent;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import java.awt.event.MouseEvent;
import java.awt.event.WindowEvent;
import java.awt.event.WindowListener;
import java.io.File;
import java.util.Enumeration;
import java.util.EventListener;
import javax.media.j3d.Alpha;
import javax.media.j3d.AmbientLight;
import javax.media.j3d.Appearance;
import javax.media.j3d.BackgroundSound;
import javax.media.j3d.Behavior;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.DirectionalLight;
import javax.media.j3d.GeometryArray;
import javax.media.j3d.Group;
import javax.media.j3d.ImageComponent;
import javax.media.j3d.IndexedQuadArray;
import javax.media.j3d.IndexedTriangleStripArray;
import javax.media.j3d.Light;
import javax.media.j3d.Material;
import javax.media.j3d.MediaContainer;
import javax.media.j3d.PointLight;
import javax.media.j3d.PointSound;
import javax.media.j3d.RotationInterpolator;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Sound;
import javax.media.j3d.Texture;
import javax.media.j3d.TextureAttributes;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.WakeupCriterion;
import javax.media.j3d.WakeupOnAWTEvent;
import javax.media.j3d.WakeupOnElapsedFrames;
import javax.media.j3d.WakeupOr;
import javax.vecmath.Color3f;
import javax.vecmath.Matrix4d;
import javax.vecmath.Point2f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import com.sun.j3d.utils.geometry.Primitive;
import com.sun.j3d.utils.image.TextureLoader;
import com.sun.j3d.utils.universe.PlatformGeometry;
import com.sun.j3d.utils.universe.SimpleUniverse;
import com.sun.j3d.utils.universe.Viewer;
import com.sun.j3d.utils.universe.ViewingPlatform;
public class ExSound extends Java3DFrame {
//--------------------------------------------------------------
// SCENE CONTENT
//--------------------------------------------------------------
//
// Nodes (updated via menu)
//
private BackgroundSound backgroundSound = null;
private PointSound pointSound = null;
private float soundHeight = 1.6f;
private float pointX = 0.0f;
private AmbientLight ambientLight = null;
private PointLight pointLight = null;
//
// Build scene
//
public Group buildScene() {
// Get the initial sound volume
float vol = ((Float) volumes[currentVolume].value).floatValue();
// Turn off the example headlight
setHeadlightEnable(false);
// Default to walk navigation
setNavigationType(Walk);
// Build the scene group
Group scene = new Group();
//
// Preload the sounds
//
if (debug)
System.err.println(" sounds...");
String path = getCurrentDirectory();
MediaContainer backgroundMedia = new MediaContainer(path + "canon.wav");
backgroundMedia.setCacheEnable(true);
MediaContainer pointMedia = new MediaContainer(path + "willow1.wav");
pointMedia.setCacheEnable(true);
// BEGIN EXAMPLE TOPIC
// Create influencing bounds
BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0,
0.0), // Center
1000.0); // Extent
// Background sound
backgroundSound = new BackgroundSound();
backgroundSound.setEnable(backgroundSoundOnOff);
backgroundSound.setLoop(Sound.INFINITE_LOOPS);
backgroundSound.setSoundData(backgroundMedia);
backgroundSound.setInitialGain(vol);
backgroundSound.setSchedulingBounds(worldBounds);
backgroundSound.setCapability(Sound.ALLOW_ENABLE_WRITE);
backgroundSound.setCapability(Sound.ALLOW_INITIAL_GAIN_WRITE);
scene.addChild(backgroundSound);
// Create a distance gain array for the point sound
Point2f[] distanceGain = { new Point2f(9.0f, 1.0f), // Full volume
new Point2f(10.0f, 0.5f), // Half volume
new Point2f(20.0f, 0.25f), // Quarter volume
new Point2f(30.0f, 0.0f), // Zero volume
};
// Point sound
pointSound = new PointSound();
pointSound.setEnable(pointSoundOnOff);
pointSound.setPosition(new Point3f(pointX, soundHeight, 0.0f));
pointSound.setLoop(Sound.INFINITE_LOOPS);
pointSound.setSoundData(pointMedia);
pointSound.setInitialGain(vol);
pointSound.setDistanceGain(distanceGain);
pointSound.setSchedulingBounds(worldBounds);
pointSound.setCapability(Sound.ALLOW_ENABLE_WRITE);
pointSound.setCapability(Sound.ALLOW_INITIAL_GAIN_WRITE);
scene.addChild(pointSound);
// END EXAMPLE TOPIC
// Build a few lights, one per sound. We'll turn them
// on when the associated sound is on.
ambientLight = new AmbientLight();
ambientLight.setEnable(backgroundSoundOnOff);
ambientLight.setColor(Gray);
ambientLight.setInfluencingBounds(worldBounds);
ambientLight.setCapability(Light.ALLOW_STATE_WRITE);
scene.addChild(ambientLight);
pointLight = new PointLight();
pointLight.setEnable(pointSoundOnOff);
pointLight.setColor(White);
pointLight.setPosition(0.0f, soundHeight, 0.0f);
pointLight.setInfluencingBounds(worldBounds);
pointLight.setCapability(Light.ALLOW_STATE_WRITE);
scene.addChild(pointLight);
// Add a basic ambient light for when all sounds (and
// their lights) are off so that the world isn't dark
AmbientLight amb = new AmbientLight();
amb.setEnable(true);
amb.setColor(Gray);
amb.setInfluencingBounds(worldBounds);
amb.setCapability(Light.ALLOW_STATE_WRITE);
scene.addChild(amb);
// Build foreground geometry
scene.addChild(buildForeground());
return scene;
}
//--------------------------------------------------------------
// FOREGROUND CONTENT
//--------------------------------------------------------------
private Group buildForeground() {
//
// Create a group for the foreground, and move
// everything up a bit.
//
TransformGroup group = new TransformGroup();
Transform3D tr = new Transform3D();
tr.setTranslation(new Vector3f(0.0f, -1.6f, 0.0f));
group.setTransform(tr);
//
// Load textures
//
if (debug)
System.err.println(" textures...");
Texture groundTex = null;
Texture spurTex = null;
Texture domeTex = null;
TextureLoader texLoader = null;
ImageComponent image = null;
texLoader = new TextureLoader("flooring.jpg", this);
image = texLoader.getImage();
if (image == null)
System.err.println("Cannot load flooring.jpg texture");
else {
groundTex = texLoader.getTexture();
groundTex.setBoundaryModeS(Texture.WRAP);
groundTex.setBoundaryModeT(Texture.WRAP);
groundTex.setMinFilter(Texture.NICEST);
groundTex.setMagFilter(Texture.NICEST);
groundTex.setMipMapMode(Texture.BASE_LEVEL);
groundTex.setEnable(true);
}
texLoader = new TextureLoader("granite07rev.jpg", this);
Texture columnTex = texLoader.getTexture();
if (columnTex == null)
System.err.println("Cannot load granite07rev.jpg texture");
else {
columnTex.setBoundaryModeS(Texture.WRAP);
columnTex.setBoundaryModeT(Texture.WRAP);
columnTex.setMinFilter(Texture.NICEST);
columnTex.setMagFilter(Texture.NICEST);
columnTex.setMipMapMode(Texture.BASE_LEVEL);
columnTex.setEnable(true);
}
texLoader = new TextureLoader("brtsky.jpg", this);
Texture boxTex = texLoader.getTexture();
if (boxTex == null)
System.err.println("Cannot load brtsky.jpg texture");
else {
boxTex.setBoundaryModeS(Texture.WRAP);
boxTex.setBoundaryModeT(Texture.WRAP);
boxTex.setMinFilter(Texture.NICEST);
boxTex.setMagFilter(Texture.NICEST);
boxTex.setMipMapMode(Texture.BASE_LEVEL);
boxTex.setEnable(true);
}
//
// Build the ground
//
if (debug)
System.err.println(" ground...");
Appearance groundApp = new Appearance();
Material groundMat = new Material();
groundMat.setAmbientColor(0.3f, 0.3f, 0.3f);
groundMat.setDiffuseColor(0.7f, 0.7f, 0.7f);
groundMat.setSpecularColor(0.0f, 0.0f, 0.0f);
groundApp.setMaterial(groundMat);
tr = new Transform3D();
tr.setScale(new Vector3d(16.0, 4.0, 1.0));
TextureAttributes groundTexAtt = new TextureAttributes();
groundTexAtt.setTextureMode(TextureAttributes.MODULATE);
groundTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST);
groundTexAtt.setTextureTransform(tr);
groundApp.setTextureAttributes(groundTexAtt);
if (groundTex != null)
groundApp.setTexture(groundTex);
ElevationGrid ground = new ElevationGrid(11, // X dimension
11, // Z dimension
2.0f, // X spacing
2.0f, // Z spacing
// Automatically use zero heights
groundApp); // Appearance
group.addChild(ground);
//
// Create a column appearance used for both columns.
//
Appearance columnApp = new Appearance();
Material columnMat = new Material();
columnMat.setAmbientColor(0.6f, 0.6f, 0.6f);
columnMat.setDiffuseColor(1.0f, 1.0f, 1.0f);
columnMat.setSpecularColor(0.0f, 0.0f, 0.0f);
columnApp.setMaterial(columnMat);
TextureAttributes columnTexAtt = new TextureAttributes();
columnTexAtt.setTextureMode(TextureAttributes.MODULATE);
columnTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST);
columnApp.setTextureAttributes(columnTexAtt);
if (columnTex != null)
columnApp.setTexture(columnTex);
//
// To give the point sound an apparent location,
// build a column and a set of three co-located
// tumbling boxes hovering above the column.
//
TransformGroup pointGroup = new TransformGroup();
tr.setIdentity();
tr.setTranslation(new Vector3f(pointX, 0.0f, 0.0f));
pointGroup.setTransform(tr);
GothicColumn column = new GothicColumn(1.0f, // height
0.2f, // radius
GothicColumn.BUILD_TOP, // flags
columnApp); // appearance
pointGroup.addChild(column);
TransformGroup rotThing = new TransformGroup();
tr.setIdentity();
tr.setTranslation(new Vector3f(0.0f, soundHeight, 0.0f));
rotThing.setTransform(tr);
Appearance boxApp = new Appearance();
// No material -- make it emissive
TextureAttributes boxTexAtt = new TextureAttributes();
boxTexAtt.setTextureMode(TextureAttributes.REPLACE);
boxTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST);
boxApp.setTextureAttributes(boxTexAtt);
if (boxTex != null)
boxApp.setTexture(boxTex);
rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height,
// depth
boxApp, // Appearance
40000, 32000, 26000));// XYZ tumble durations
rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height,
// depth
boxApp, // Appearance
38000, 30000, 28000));// XYZ tumble durations
rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height,
// depth
boxApp, // Appearance
30000, 26000, 34000));// XYZ tumble durations
pointGroup.addChild(rotThing);
group.addChild(pointGroup);
return group;
}
private int[] coordinateIndices = { 0, 1, 5, 4, // front
1, 2, 6, 5, // right
2, 3, 7, 6, // back
3, 0, 4, 7, // left
4, 5, 6, 7, // top
3, 2, 1, 0, // bottom
};
private float[] textureCoordinates = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.0f, 1.0f, };
private int[] textureCoordinateIndices = { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, };
private float[] normals = { 0.0f, 0.0f, 1.0f, // front
1.0f, 0.0f, 0.0f, // right
0.0f, 0.0f, -1.0f, // back
-1.0f, 0.0f, 0.0f, // left
0.0f, 1.0f, 0.0f, // top
0.0f, -1.0f, 0.0f, // bottom
};
private int[] normalIndices = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
3, 3, 4, 4, 4, 4, 5, 5, 5, 5, };
private Shape3D buildBox(float width, float height, float depth,
Appearance app) {
float w2 = width / 2.0f;
float h2 = height / 2.0f;
float d2 = depth / 2.0f;
float[] coordinates = new float[8 * 3];
int n = 0;
// Around the bottom of the box
coordinates[n + 0] = -w2;
coordinates[n + 1] = -h2;
coordinates[n + 2] = d2;
n += 3;
coordinates[n + 0] = w2;
coordinates[n + 1] = -h2;
coordinates[n + 2] = d2;
n += 3;
coordinates[n + 0] = w2;
coordinates[n + 1] = -h2;
coordinates[n + 2] = -d2;
n += 3;
coordinates[n + 0] = -w2;
coordinates[n + 1] = -h2;
coordinates[n + 2] = -d2;
n += 3;
// Around the top of the box
coordinates[n + 0] = -w2;
coordinates[n + 1] = h2;
coordinates[n + 2] = d2;
n += 3;
coordinates[n + 0] = w2;
coordinates[n + 1] = h2;
coordinates[n + 2] = d2;
n += 3;
coordinates[n + 0] = w2;
coordinates[n + 1] = h2;
coordinates[n + 2] = -d2;
n += 3;
coordinates[n + 0] = -w2;
coordinates[n + 1] = h2;
coordinates[n + 2] = -d2;
n += 3;
IndexedQuadArray quads = new IndexedQuadArray(coordinates.length, // vertex
// count
GeometryArray.COORDINATES | GeometryArray.NORMALS
| GeometryArray.TEXTURE_COORDINATE_2,
coordinateIndices.length);
quads.setCoordinates(0, coordinates);
quads.setCoordinateIndices(0, coordinateIndices);
quads.setNormals(0, normals);
quads.setNormalIndices(0, normalIndices);
quads.setTextureCoordinates(0, textureCoordinates);
quads.setTextureCoordinateIndices(0, textureCoordinateIndices);
Shape3D shape = new Shape3D(quads, app);
return shape;
}
private Group buildTumblingBox(float width, float height, float depth,
Appearance app, int xDur, int yDur, int zDur) {
BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0,
0.0), // Center
1000.0); // Extent
// Build a box to tumble
Shape3D box = buildBox(width, height, depth, app);
// Build a set of nested transform groups. Attach
// to each one a behavior that rotates around an X,
// Y, or Z axis. Use different rotation speeds for
// each axis to create a tumbling effect.
TransformGroup outerGroup = new TransformGroup();
outerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
Transform3D yAxis = new Transform3D();
Alpha alpha = new Alpha(-1, // loop count: -1 = forever
Alpha.INCREASING_ENABLE, // increasing
0, // trigger time: 0 = now
0, // delay: 0 = none
xDur, // increasing duration
0, // increasing ramp duration
0, // at one (sustain) duration
0, // decreasing duration
0, // decreasing ramp duration
0); // at zero duration
RotationInterpolator rot = new RotationInterpolator(alpha, // Alpha
// control
outerGroup, // Target transform group
yAxis, // Y axis rotation
0.0f, // Minimum angle
2.0f * (float) Math.PI);// Maximum angle
rot.setSchedulingBounds(worldBounds);
outerGroup.addChild(rot);
TransformGroup middleGroup = new TransformGroup();
middleGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
Transform3D xAxis = new Transform3D();
xAxis.rotZ(-1.571f);
alpha = new Alpha(-1, // loop count: -1 = forever
Alpha.INCREASING_ENABLE, // increasing
0, // trigger time: 0 = now
0, // delay: 0 = none
yDur, // increasing duration
0, // increasing ramp duration
0, // at one (sustain) duration
0, // decreasing duration
0, // decreasing ramp duration
0); // at zero duration
rot = new RotationInterpolator(alpha, // Alpha control
middleGroup, // Target transform group
xAxis, // Y axis rotation
0.0f, // Minimum angle
2.0f * (float) Math.PI);// Maximum angle
rot.setSchedulingBounds(worldBounds);
middleGroup.addChild(rot);
outerGroup.addChild(middleGroup);
TransformGroup innerGroup = new TransformGroup();
innerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
Transform3D zAxis = new Transform3D();
zAxis.rotX(1.571f);
alpha = new Alpha(-1, // loop count: -1 = forever
Alpha.INCREASING_ENABLE, // increasing
0, // trigger time: 0 = now
0, // delay: 0 = none
zDur, // increasing duration
0, // increasing ramp duration
0, // at one (sustain) duration
0, // decreasing duration
0, // decreasing ramp duration
0); // at zero duration
rot = new RotationInterpolator(alpha, // Alpha control
innerGroup, // Target transform group
zAxis, // Y axis rotation
0.0f, // Minimum angle
2.0f * (float) Math.PI);// Maximum angle
rot.setSchedulingBounds(worldBounds);
innerGroup.addChild(rot);
middleGroup.addChild(innerGroup);
innerGroup.addChild(box);
return outerGroup;
}
//--------------------------------------------------------------
// USER INTERFACE
//--------------------------------------------------------------
//
// Main
//
public static void main(String[] args) {
ExSound ex = new ExSound();
ex.initialize(args);
ex.buildUniverse();
ex.showFrame();
}
// On/off choices
private boolean backgroundSoundOnOff = false;
private CheckboxMenuItem backgroundSoundOnOffMenu = null;
private boolean pointSoundOnOff = false;
private CheckboxMenuItem pointSoundOnOffMenu = null;
// Volume menu choices
private NameValue[] volumes = { new NameValue("Silent", new Float(0.0f)),
new NameValue("Low volume", new Float(0.5f)),
new NameValue("Medium volume", new Float(1.0f)),
new NameValue("High volume", new Float(2.0f)), };
private int currentVolume = 2;
private CheckboxMenu volumeMenu = null;
//
// Initialize the GUI (application and applet)
//
public void initialize(String[] args) {
// Initialize the window, menubar, etc.
super.initialize(args);
exampleFrame.setTitle("Java 3D Sound Example");
//
// Add a menubar menu to change node parameters
// Background sound on/off
// Point sound on/off
//
Menu m = new Menu("Sounds");
backgroundSoundOnOffMenu = new CheckboxMenuItem(
"Background sound on/off", backgroundSoundOnOff);
backgroundSoundOnOffMenu.addItemListener(this);
m.add(backgroundSoundOnOffMenu);
pointSoundOnOffMenu = new CheckboxMenuItem("Point sound on/off",
pointSoundOnOff);
pointSoundOnOffMenu.addItemListener(this);
m.add(pointSoundOnOffMenu);
volumeMenu = new CheckboxMenu("Volume", volumes, currentVolume, this);
m.add(volumeMenu);
exampleMenuBar.add(m);
}
//
// Handle checkboxes and menu choices
//
public void checkboxChanged(CheckboxMenu menu, int check) {
if (menu == volumeMenu) {
// Change the sound volumes
currentVolume = check;
float vol = ((Float) volumes[check].value).floatValue();
backgroundSound.setInitialGain(vol);
pointSound.setInitialGain(vol);
return;
}
// Handle all other checkboxes
super.checkboxChanged(menu, check);
}
public void itemStateChanged(ItemEvent event) {
Object src = event.getSource();
if (src == backgroundSoundOnOffMenu) {
// Turn the background sound on or off
backgroundSoundOnOff = backgroundSoundOnOffMenu.getState();
backgroundSound.setEnable(backgroundSoundOnOff);
ambientLight.setEnable(backgroundSoundOnOff);
return;
}
if (src == pointSoundOnOffMenu) {
// Turn the point sound on or off
pointSoundOnOff = pointSoundOnOffMenu.getState();
pointSound.setEnable(pointSoundOnOff);
pointLight.setEnable(pointSoundOnOff);
return;
}
// Handle all other checkboxes
super.itemStateChanged(event);
}
}
//
//CLASS
//ElevationGrid - a 3D terrain grid built from a list of heights
//
//DESCRIPTION
//This class creates a 3D terrain on a grid whose X and Z dimensions,
//and row/column spacing are parameters, along with a list of heights
//(elevations), one per grid row/column pair.
//
class ElevationGrid extends Primitive {
// Parameters
protected int xDimension = 0, zDimension = 0;
protected double xSpacing = 0.0, zSpacing = 0.0;
protected double[] heights = null;
// 3D nodes
private Appearance mainAppearance = null;
private Shape3D shape = null;
private IndexedTriangleStripArray tristrip = null;
//
// Construct an elevation grid
//
public ElevationGrid() {
xDimension = 2;
zDimension = 2;
xSpacing = 1.0;
zSpacing = 1.0;
mainAppearance = null;
zeroHeights();
rebuild();
}
public ElevationGrid(int xDim, int zDim) {
xDimension = xDim;
zDimension = zDim;
xSpacing = 1.0;
zSpacing = 1.0;
mainAppearance = null;
zeroHeights();
rebuild();
}
public ElevationGrid(int xDim, int zDim, Appearance app) {
xDimension = xDim;
zDimension = zDim;
xSpacing = 1.0;
zSpacing = 1.0;
mainAppearance = app;
zeroHeights();
rebuild();
}
public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace) {
xDimension = xDim;
zDimension = zDim;
xSpacing = xSpace;
zSpacing = zSpace;
mainAppearance = null;
zeroHeights();
rebuild();
}
public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace,
Appearance app) {
xDimension = xDim;
zDimension = zDim;
xSpacing = xSpace;
zSpacing = zSpace;
mainAppearance = app;
zeroHeights();
rebuild();
}
public ElevationGrid(int xDim, int zDim, double[] h) {
this(xDim, zDim, 1.0, 1.0, h, null);
}
public ElevationGrid(int xDim, int zDim, double[] h, Appearance app) {
this(xDim, zDim, 1.0, 1.0, h, app);
}
public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace,
double[] h) {
this(xDim, zDim, xSpace, zSpace, h, null);
}
public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace,
double[] h, Appearance app) {
xDimension = xDim;
zDimension = zDim;
xSpacing = xSpace;
zSpacing = zSpace;
mainAppearance = app;
if (h == null)
zeroHeights();
else {
heights = new double[h.length];
for (int i = 0; i < h.length; i++)
heights[i] = h[i];
}
rebuild();
}
private void zeroHeights() {
int n = xDimension * zDimension;
heights = new double[n];
for (int i = 0; i < n; i++)
heights[i] = 0.0;
}
private void rebuild() {
// Build a shape
if (shape == null) {
shape = new Shape3D();
shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
shape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);
shape.setAppearance(mainAppearance);
addChild(shape);
} else {
shape.setAppearance(mainAppearance);
}
if (xDimension < 2 || zDimension < 2 || heights == null
|| heights.length < 4) {
tristrip = null;
shape.setGeometry(null);
return;
}
// Create a list of coordinates, one per grid row/column
double[] coordinates = new double[xDimension * zDimension * 3];
double x, z;
int n = 0, k = 0;
z = ((double) (zDimension - 1)) * zSpacing / 2.0; // start at front edge
for (int i = 0; i < zDimension; i++) {
x = -((double) (xDimension - 1)) * xSpacing / 2.0;// start at left
// edge
for (int j = 0; j < xDimension; j++) {
coordinates[n++] = x;
coordinates[n++] = heights[k++];
coordinates[n++] = z;
x += xSpacing;
}
z -= zSpacing;
}
// Create a list of normals, one per grid row/column
float[] normals = new float[xDimension * zDimension * 3];
Vector3f one = new Vector3f(0.0f, 0.0f, 0.0f);
Vector3f two = new Vector3f(0.0f, 0.0f, 0.0f);
Vector3f norm = new Vector3f(0.0f, 0.0f, 0.0f);
n = 0;
k = 0;
for (int i = 0; i < zDimension - 1; i++) {
for (int j = 0; j < xDimension - 1; j++) {
// Vector to right in X
one.set((float) xSpacing,
(float) (heights[k + 1] - heights[k]), 0.0f);
// Vector back in Z
two.set(0.0f, (float) (heights[k + xDimension] - heights[k]),
(float) -zSpacing);
// Cross them to get the normal
norm.cross(one, two);
normals[n++] = norm.x;
normals[n++] = norm.y;
normals[n++] = norm.z;
k++;
}
// Last normal in row is a copy of the previous one
normals[n] = normals[n - 3]; // X
normals[n + 1] = normals[n - 2]; // Y
normals[n + 2] = normals[n - 1]; // Z
n += 3;
k++;
}
// Last row of normals is a copy of the previous row
for (int j = 0; j < xDimension; j++) {
normals[n] = normals[n - xDimension * 3]; // X
normals[n + 1] = normals[n - xDimension * 3 + 1]; // Y
normals[n + 2] = normals[n - xDimension * 3 + 2]; // Z
n += 3;
}
// Create a list of texture coordinates, one per grid row/column
float[] texcoordinates = new float[xDimension * zDimension * 2];
float deltaS = 1.0f / (float) (xDimension - 1);
float deltaT = 1.0f / (float) (zDimension - 1);
float s = 0.0f;
float t = 0.0f;
n = 0;
for (int i = 0; i < zDimension; i++) {
s = 0.0f;
for (int j = 0; j < xDimension; j++) {
texcoordinates[n++] = s;
texcoordinates[n++] = t;
s += deltaS;
}
t += deltaT;
}
// Create a list of triangle strip indexes. Each strip goes
// down one row (X direction) of the elevation grid.
int[] indexes = new int[xDimension * (zDimension - 1) * 2];
int[] stripCounts = new int[zDimension - 1];
n = 0;
k = 0;
for (int i = 0; i < zDimension - 1; i++) {
stripCounts[i] = xDimension * 2;
for (int j = 0; j < xDimension; j++) {
indexes[n++] = k + xDimension;
indexes[n++] = k;
k++;
}
}
// Create geometry for collection of triangle strips, one
// strip per row of the elevation grid
tristrip = new IndexedTriangleStripArray(coordinates.length,
GeometryArray.COORDINATES | GeometryArray.NORMALS
| GeometryArray.TEXTURE_COORDINATE_2, indexes.length,
stripCounts);
tristrip.setCoordinates(0, coordinates);
tristrip.setNormals(0, normals);
tristrip.setTextureCoordinates(0, texcoordinates);
tristrip.setCoordinateIndices(0, indexes);
tristrip.setNormalIndices(0, indexes);
tristrip.setTextureCoordinateIndices(0, indexes);
// Set the geometry for the shape
shape.setGeometry(tristrip);
}
//
// Control the appearance
//
public void setAppearance(Appearance app) {
mainAppearance = app;
if (shape != null)
shape.setAppearance(mainAppearance);
}
//
// Control grid parameters
//
public void setHeights(double[] h) {
if (h == null)
zeroHeights();
else {
heights = new double[h.length];
for (int i = 0; i < h.length; i++)
heights[i] = h[i];
}
rebuild();
}
public double[] getHeights() {
return heights;
}
public void setXDimension(int xDim) {
xDimension = xDim;
rebuild();
}
public int getXDimension() {
return xDimension;
}
public void setZDimension(int zDim) {
zDimension = zDim;
rebuild();
}
public int getZDimension() {
return zDimension;
}
public void setXSpacing(double xSpace) {
xSpacing = xSpace;
rebuild();
}
public double getXSpacing() {
return xSpacing;
}
public void setZSpacing(double zSpace) {
zSpacing = zSpace;
rebuild();
}
public double getZSpacing() {
return zSpacing;
}
//
// Provide info on the shape and geometry
//
public Shape3D getShape(int partid) {
return shape;
}
public int getNumTriangles() {
return xDimension * zDimension * 2;
}
public int getNumVertices() {
return xDimension * zDimension;
}
/*
* (non-Javadoc)
*
* @see com.sun.j3d.utils.geometry.Primitive#getAppearance(int)
*/
public Appearance getAppearance(int arg0) {
// TODO Auto-generated method stub
return null;
}
}
//
//CLASS
//GothicColumn - Gothic-style column used in example scenes
//
//DESCRIPTION
//This class builds a Gothic-column architectural column.
//
//SEE ALSO
//?
//
//AUTHOR
//David R. Nadeau / San Diego Supercomputer Center
//
//
class GothicColumn extends Primitive {
//
// Construction Flags
//
public final static int BUILD_TAPERED_CROWN = 0x1;
public final static int BUILD_TOP = 0x2;
public final static int BUILD_BOTTOM = 0x4;
//
// 3D nodes
//
private Appearance mainAppearance = null;
//
// Construct a column
//
public GothicColumn(float height, float radius, Appearance app) {
this(height, radius, 0, app);
}
public GothicColumn(float height, float radius, int flags, Appearance app) {
mainAppearance = app;
// Compute sizes and positions based upon the
// desired main column radius
// Base box
float baseWidth = 2.7f * radius;
float baseDepth = baseWidth;
float baseHeight = 0.75f * radius / 2.0f;
// Base box #2
float base2Width = 0.8f * baseWidth;
float base2Depth = base2Width;
float base2Height = baseHeight / 2.0f;
// Tapered crown
float crownWidth1 = 2.0f * 0.707f * radius;
float crownDepth1 = crownWidth1;
float crownWidth2 = 1.0f * base2Width;
float crownDepth2 = 1.0f * base2Depth;
float crownHeight = 2.0f * baseHeight;
// Box above tapered crown
float crown2Width = 1.1f * base2Width;
float crown2Depth = 1.1f * base2Depth;
float crown2Height = base2Height;
// Final crown box
float crown3Width = 1.1f * baseWidth;
float crown3Depth = 1.1f * baseDepth;
float crown3Height = baseHeight;
// Cylindrical column
// Extend it up and into the tapered crown
float columnHeight = height - baseHeight - base2Height - crown2Height
- crown3Height;
float columnRadius = radius;
float baseY = baseHeight / 2.0f;
float base2Y = baseHeight + base2Height / 2.0f;
float columnY = baseHeight + base2Height + columnHeight / 2.0f;
float crown2Y = baseHeight + base2Height + columnHeight + crown2Height
/ 2.0f;
float crown3Y = baseHeight + base2Height + columnHeight + crown2Height
+ crown3Height / 2.0f;
float crownY = crown2Y - crown2Height / 2.0f - crownHeight / 2.0f;
// Column base box
int fl = BUILD_TOP;
if ((flags & BUILD_BOTTOM) != 0)
fl |= BUILD_BOTTOM;
addBox(baseWidth, baseHeight, baseDepth, baseY, fl);
// Column base box #2 (no bottom)
addBox(base2Width, base2Height, base2Depth, base2Y, BUILD_TOP);
// Main column (no top or bottom)
addCylinder(columnRadius, columnHeight, columnY);
// Column crown tapered box (no top or bottom)
if ((flags & BUILD_TAPERED_CROWN) != 0) {
addBox(crownWidth1, crownHeight, crownDepth1, crownY, crownWidth2,
crownDepth2, 0);
}
// Box above tapered crown (no top)
addBox(crown2Width, crown2Height, crown2Depth, crown2Y, BUILD_BOTTOM);
// Final crown box
fl = BUILD_BOTTOM;
if ((flags & BUILD_TOP) != 0)
fl |= BUILD_TOP;
addBox(crown3Width, crown3Height, crown3Depth, crown3Y, fl);
}
//
// Add an untapered box
//
private void addBox(float width, float height, float depth, float y) {
addBox(width, height, depth, y, width, depth, 0);
}
private void addBox(float width, float height, float depth, float y,
int flags) {
addBox(width, height, depth, y, width, depth, flags);
}
private void addBox(float width, float height, float depth, float y,
float width2, float depth2) {
addBox(width, height, depth, y, width2, depth2, 0);
}
//
// Add a tapered box
//
private void addBox(float width, float height, float depth, float y,
float width2, float depth2, int flags) {
float[] coordinates = {
// around the bottom
-width / 2.0f, -height / 2.0f, depth / 2.0f, width / 2.0f,
-height / 2.0f, depth / 2.0f, width / 2.0f, -height / 2.0f,
-depth / 2.0f, -width / 2.0f, -height / 2.0f, -depth / 2.0f,
// around the top
-width2 / 2.0f, height / 2.0f, depth2 / 2.0f, width2 / 2.0f,
height / 2.0f, depth2 / 2.0f, width2 / 2.0f, height / 2.0f,
-depth2 / 2.0f, -width2 / 2.0f, height / 2.0f, -depth2 / 2.0f, };
int[] fullCoordinateIndexes = { 0, 1, 5, 4, // front
1, 2, 6, 5, // right
2, 3, 7, 6, // back
3, 0, 4, 7, // left
4, 5, 6, 7, // top
3, 2, 1, 0, // bottom
};
float v = -(width2 - width) / height;
float[] normals = { 0.0f, v, 1.0f, // front
1.0f, v, 0.0f, // right
0.0f, v, -1.0f, // back
-1.0f, v, 0.0f, // left
0.0f, 1.0f, 0.0f, // top
0.0f, -1.0f, 0.0f, // bottom
};
int[] fullNormalIndexes = { 0, 0, 0, 0, // front
1, 1, 1, 1, // right
2, 2, 2, 2, // back
3, 3, 3, 3, // left
4, 4, 4, 4, // top
5, 5, 5, 5, // bottom
};
float[] textureCoordinates = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.0f, 1.0f, };
int[] fullTextureCoordinateIndexes = { 0, 1, 2, 3, // front
0, 1, 2, 3, // right
0, 1, 2, 3, // back
0, 1, 2, 3, // left
0, 1, 2, 3, // top
0, 1, 2, 3, // bottom
};
// Select indexes needed
int[] coordinateIndexes;
int[] normalIndexes;
int[] textureCoordinateIndexes;
if (flags == 0) {
// build neither top or bottom
coordinateIndexes = new int[4 * 4];
textureCoordinateIndexes = new int[4 * 4];
normalIndexes = new int[4 * 4];
for (int i = 0; i < 4 * 4; i++) {
coordinateIndexes[i] = fullCoordinateIndexes[i];
textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i];
normalIndexes[i] = fullNormalIndexes[i];
}
} else if ((flags & (BUILD_TOP | BUILD_BOTTOM)) == (BUILD_TOP | BUILD_BOTTOM)) {
// build top and bottom
coordinateIndexes = fullCoordinateIndexes;
textureCoordinateIndexes = fullTextureCoordinateIndexes;
normalIndexes = fullNormalIndexes;
} else if ((flags & BUILD_TOP) != 0) {
// build top but not bottom
coordinateIndexes = new int[5 * 4];
textureCoordinateIndexes = new int[5 * 4];
normalIndexes = new int[5 * 4];
for (int i = 0; i < 5 * 4; i++) {
coordinateIndexes[i] = fullCoordinateIndexes[i];
textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i];
normalIndexes[i] = fullNormalIndexes[i];
}
} else {
// build bottom but not top
coordinateIndexes = new int[5 * 4];
textureCoordinateIndexes = new int[5 * 4];
normalIndexes = new int[5 * 4];
for (int i = 0; i < 4 * 4; i++) {
coordinateIndexes[i] = fullCoordinateIndexes[i];
textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i];
normalIndexes[i] = fullNormalIndexes[i];
}
for (int i = 5 * 4; i < 6 * 4; i++) {
coordinateIndexes[i - 4] = fullCoordinateIndexes[i];
textureCoordinateIndexes[i - 4] = fullTextureCoordinateIndexes[i];
normalIndexes[i - 4] = fullNormalIndexes[i];
}
}
IndexedQuadArray quads = new IndexedQuadArray(coordinates.length, // number
// of
// vertexes
GeometryArray.COORDINATES | // vertex coordinates given
GeometryArray.NORMALS | // normals given
GeometryArray.TEXTURE_COORDINATE_2, // texture
// coordinates given
coordinateIndexes.length); // number of coordinate indexes
quads.setCoordinates(0, coordinates);
quads.setCoordinateIndices(0, coordinateIndexes);
quads.setNormals(0, normals);
quads.setNormalIndices(0, normalIndexes);
quads.setTextureCoordinates(0, textureCoordinates);
quads.setTextureCoordinateIndices(0, textureCoordinateIndexes);
Shape3D box = new Shape3D(quads, mainAppearance);
Vector3f trans = new Vector3f(0.0f, y, 0.0f);
Transform3D tr = new Transform3D();
tr.set(trans); // translate
TransformGroup tg = new TransformGroup(tr);
tg.addChild(box);
addChild(tg);
}
private final static int NSTEPS = 16;
private void addCylinder(float radius, float height, float y) {
//
// Compute coordinates, normals, and texture coordinates
// around the top and bottom of a cylinder
//
float[] coordinates = new float[NSTEPS * 2 * 3]; // xyz
float[] normals = new float[NSTEPS * 2 * 3]; // xyz vector
float[] textureCoordinates = new float[NSTEPS * 2 * 2]; // st
float angle = 0.0f;
float deltaAngle = 2.0f * (float) Math.PI / ((float) NSTEPS - 1);
float s = 0.0f;
float deltaS = 1.0f / ((float) NSTEPS - 1);
int n = 0;
int tn = 0;
float h2 = height / 2.0f;
for (int i = 0; i < NSTEPS; i++) {
// bottom
normals[n + 0] = (float) Math.cos(angle);
normals[n + 1] = 0.0f;
normals[n + 2] = -(float) Math.sin(angle);
coordinates[n + 0] = radius * normals[n + 0];
coordinates[n + 1] = -h2;
coordinates[n + 2] = radius * normals[n + 2];
textureCoordinates[tn + 0] = s;
textureCoordinates[tn + 1] = 0.0f;
n += 3;
tn += 2;
// top
normals[n + 0] = normals[n - 3];
normals[n + 1] = 0.0f;
normals[n + 2] = normals[n - 1];
coordinates[n + 0] = coordinates[n - 3];
coordinates[n + 1] = h2;
coordinates[n + 2] = coordinates[n - 1];
textureCoordinates[tn + 0] = s;
textureCoordinates[tn + 1] = 1.0f;
n += 3;
tn += 2;
angle += deltaAngle;
s += deltaS;
}
//
// Compute coordinate indexes, normal indexes, and texture
// coordinate indexes awround the sides of a cylinder.
// For this application, we don't need top or bottom, so
// skip them.
//
int[] indexes = new int[NSTEPS * 4];
n = 0;
int p = 0; // panel count
for (int i = 0; i < NSTEPS - 1; i++) {
indexes[n + 0] = p; // bottom left
indexes[n + 1] = p + 2; // bottom right (next panel)
indexes[n + 2] = p + 3; // top right (next panel)
indexes[n + 3] = p + 1; // top left
n += 4;
p += 2;
}
indexes[n + 0] = p; // bottom left
indexes[n + 1] = 0; // bottom right (next panel)
indexes[n + 2] = 1; // top right (next panel)
indexes[n + 3] = p + 1; // top left
IndexedQuadArray quads = new IndexedQuadArray(coordinates.length / 3, // number
// of
// vertexes
GeometryArray.COORDINATES | // format
GeometryArray.NORMALS
| GeometryArray.TEXTURE_COORDINATE_2, indexes.length); // number
// of
// indexes
quads.setCoordinates(0, coordinates);
quads.setTextureCoordinates(0, textureCoordinates);
quads.setNormals(0, normals);
quads.setCoordinateIndices(0, indexes);
quads.setTextureCoordinateIndices(0, indexes);
quads.setNormalIndices(0, indexes);
Shape3D shape = new Shape3D(quads, mainAppearance);
Vector3f trans = new Vector3f(0.0f, y, 0.0f);
Transform3D tr = new Transform3D();
tr.set(trans); // translate
TransformGroup tg = new TransformGroup(tr);
tg.addChild(shape);
addChild(tg);
}
//
// Control the appearance
//
public void setAppearance(Appearance app) {
mainAppearance = app;
}
//
// Provide info on the shape and geometry
//
public Shape3D getShape(int partid) {
return null;
}
public int getNumTriangles() {
return 0;
}
public int getNumVertices() {
return 2;
}
/*
* (non-Javadoc)
*
* @see com.sun.j3d.utils.geometry.Primitive#getAppearance(int)
*/
public Appearance getAppearance(int arg0) {
// TODO Auto-generated method stub
return null;
}
}
/**
* The Example class is a base class extended by example applications. The class
* provides basic features to create a top-level frame, add a menubar and
* Canvas3D, build the universe, set up "examine" and "walk" style navigation
* behaviors, and provide hooks so that subclasses can add 3D content to the
* example's universe.
*
* Using this Example class simplifies the construction of example applications,
* enabling the author to focus upon 3D content and not the busywork of creating
* windows, menus, and universes.
*
* @version 1.0, 98/04/16
* @author David R. Nadeau, San Diego Supercomputer Center
*/
class Java3DFrame extends Applet implements WindowListener, ActionListener,
ItemListener, CheckboxMenuListener {
// Navigation types
public final static int Walk = 0;
public final static int Examine = 1;
// Should the scene be compiled?
private boolean shouldCompile = true;
// GUI objects for our subclasses
protected Java3DFrame example = null;
protected Frame exampleFrame = null;
protected MenuBar exampleMenuBar = null;
protected Canvas3D exampleCanvas = null;
protected TransformGroup exampleViewTransform = null;
protected TransformGroup exampleSceneTransform = null;
protected boolean debug = false;
// Private GUI objects and state
private boolean headlightOnOff = true;
private int navigationType = Examine;
private CheckboxMenuItem headlightMenuItem = null;
private CheckboxMenuItem walkMenuItem = null;
private CheckboxMenuItem examineMenuItem = null;
private DirectionalLight headlight = null;
private ExamineViewerBehavior examineBehavior = null;
private WalkViewerBehavior walkBehavior = null;
//--------------------------------------------------------------
// ADMINISTRATION
//--------------------------------------------------------------
/**
* The main program entry point when invoked as an application. Each example
* application that extends this class must define their own main.
*
* @param args
* a String array of command-line arguments
*/
public static void main(String[] args) {
Java3DFrame ex = new Java3DFrame();
ex.initialize(args);
ex.buildUniverse();
ex.showFrame();
}
/**
* Constructs a new Example object.
*
* @return a new Example that draws no 3D content
*/
public Java3DFrame() {
// Do nothing
}
/**
* Initializes the application when invoked as an applet.
*/
public void init() {
// Collect properties into String array
String[] args = new String[2];
// NOTE: to be done still...
this.initialize(args);
this.buildUniverse();
this.showFrame();
// NOTE: add something to the browser page?
}
/**
* Initializes the Example by parsing command-line arguments, building an
* AWT Frame, constructing a menubar, and creating the 3D canvas.
*
* @param args
* a String array of command-line arguments
*/
protected void initialize(String[] args) {
example = this;
// Parse incoming arguments
parseArgs(args);
// Build the frame
if (debug)
System.err.println("Building GUI...");
exampleFrame = new Frame();
exampleFrame.setSize(640, 480);
exampleFrame.setTitle("Java 3D Example");
exampleFrame.setLayout(new BorderLayout());
// Set up a close behavior
exampleFrame.addWindowListener(this);
// Create a canvas
exampleCanvas = new Canvas3D(null);
exampleCanvas.setSize(630, 460);
exampleFrame.add("Center", exampleCanvas);
// Build the menubar
exampleMenuBar = this.buildMenuBar();
exampleFrame.setMenuBar(exampleMenuBar);
// Pack
exampleFrame.pack();
exampleFrame.validate();
// exampleFrame.setVisible( true );
}
/**
* Parses incoming command-line arguments. Applications that subclass this
* class may override this method to support their own command-line
* arguments.
*
* @param args
* a String array of command-line arguments
*/
protected void parseArgs(String[] args) {
for (int i = 0; i < args.length; i++) {
if (args[i].equals("-d"))
debug = true;
}
}
//--------------------------------------------------------------
// SCENE CONTENT
//--------------------------------------------------------------
/**
* Builds the 3D universe by constructing a virtual universe (via
* SimpleUniverse), a view platform (via SimpleUniverse), and a view (via
* SimpleUniverse). A headlight is added and a set of behaviors initialized
* to handle navigation types.
*/
protected void buildUniverse() {
//
// Create a SimpleUniverse object, which builds:
//
// - a Locale using the given hi-res coordinate origin
//
// - a ViewingPlatform which in turn builds:
// - a MultiTransformGroup with which to move the
// the ViewPlatform about
//
// - a ViewPlatform to hold the view
//
// - a BranchGroup to hold avatar geometry (if any)
//
// - a BranchGroup to hold view platform
// geometry (if any)
//
// - a Viewer which in turn builds:
// - a PhysicalBody which characterizes the user's
// viewing preferences and abilities
//
// - a PhysicalEnvironment which characterizes the
// user's rendering hardware and software
//
// - a JavaSoundMixer which initializes sound
// support within the 3D environment
//
// - a View which renders the scene into a Canvas3D
//
// All of these actions could be done explicitly, but
// using the SimpleUniverse utilities simplifies the code.
//
if (debug)
System.err.println("Building scene graph...");
SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate
// for the origin -
// use default
1, // Number of transforms in MultiTransformGroup
exampleCanvas, // Canvas3D into which to draw
null); // URL for user configuration file - use defaults
//
// Get the viewer and create an audio device so that
// sound will be enabled in this content.
//
Viewer viewer = universe.getViewer();
viewer.createAudioDevice();
//
// Get the viewing platform created by SimpleUniverse.
// From that platform, get the inner-most TransformGroup
// in the MultiTransformGroup. That inner-most group
// contains the ViewPlatform. It is this inner-most
// TransformGroup we need in order to:
//
// - add a "headlight" that always aims forward from
// the viewer
//
// - change the viewing direction in a "walk" style
//
// The inner-most TransformGroup's transform will be
// changed by the walk behavior (when enabled).
//
ViewingPlatform viewingPlatform = universe.getViewingPlatform();
exampleViewTransform = viewingPlatform.getViewPlatformTransform();
//
// Create a "headlight" as a forward-facing directional light.
// Set the light's bounds to huge. Since we want the light
// on the viewer's "head", we need the light within the
// TransformGroup containing the ViewPlatform. The
// ViewingPlatform class creates a handy hook to do this
// called "platform geometry". The PlatformGeometry class is
// subclassed off of BranchGroup, and is intended to contain
// a description of the 3D platform itself... PLUS a headlight!
// So, to add the headlight, create a new PlatformGeometry group,
// add the light to it, then add that platform geometry to the
// ViewingPlatform.
//
BoundingSphere allBounds = new BoundingSphere(
new Point3d(0.0, 0.0, 0.0), 100000.0);
PlatformGeometry pg = new PlatformGeometry();
headlight = new DirectionalLight();
headlight.setColor(White);
headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f));
headlight.setInfluencingBounds(allBounds);
headlight.setCapability(Light.ALLOW_STATE_WRITE);
pg.addChild(headlight);
viewingPlatform.setPlatformGeometry(pg);
//
// Create the 3D content BranchGroup, containing:
//
// - a TransformGroup who's transform the examine behavior
// will change (when enabled).
//
// - 3D geometry to view
//
// Build the scene root
BranchGroup sceneRoot = new BranchGroup();
// Build a transform that we can modify
exampleSceneTransform = new TransformGroup();
exampleSceneTransform
.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
exampleSceneTransform
.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND);
//
// Build the scene, add it to the transform, and add
// the transform to the scene root
//
if (debug)
System.err.println(" scene...");
Group scene = this.buildScene();
exampleSceneTransform.addChild(scene);
sceneRoot.addChild(exampleSceneTransform);
//
// Create a pair of behaviors to implement two navigation
// types:
//
// - "examine": a style where mouse drags rotate about
// the scene's origin as if it is an object under
// examination. This is similar to the "Examine"
// navigation type used by VRML browsers.
//
// - "walk": a style where mouse drags rotate about
// the viewer's center as if the viewer is turning
// about to look at a scene they are in. This is
// similar to the "Walk" navigation type used by
// VRML browsers.
//
// Aim the examine behavior at the scene's TransformGroup
// and add the behavior to the scene root.
//
// Aim the walk behavior at the viewing platform's
// TransformGroup and add the behavior to the scene root.
//
// Enable one (and only one!) of the two behaviors
// depending upon the current navigation type.
//
examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform
// gorup
// to
// modify
exampleFrame); // Parent frame for cusor changes
examineBehavior.setSchedulingBounds(allBounds);
sceneRoot.addChild(examineBehavior);
walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform
// group to
// modify
exampleFrame); // Parent frame for cusor changes
walkBehavior.setSchedulingBounds(allBounds);
sceneRoot.addChild(walkBehavior);
if (navigationType == Walk) {
examineBehavior.setEnable(false);
walkBehavior.setEnable(true);
} else {
examineBehavior.setEnable(true);
walkBehavior.setEnable(false);
}
//
// Compile the scene branch group and add it to the
// SimpleUniverse.
//
if (shouldCompile)
sceneRoot.compile();
universe.addBranchGraph(sceneRoot);
reset();
}
/**
* Builds the scene. Example application subclasses should replace this
* method with their own method to build 3D content.
*
* @return a Group containing 3D content to display
*/
public Group buildScene() {
// Build the scene group containing nothing
Group scene = new Group();
return scene;
}
//--------------------------------------------------------------
// SET/GET METHODS
//--------------------------------------------------------------
/**
* Sets the headlight on/off state. The headlight faces forward in the
* direction the viewer is facing. Example applications that add their own
* lights will typically turn the headlight off. A standard menu item
* enables the headlight to be turned on and off via user control.
*
* @param onOff
* a boolean turning the light on (true) or off (false)
*/
public void setHeadlightEnable(boolean onOff) {
headlightOnOff = onOff;
if (headlight != null)
headlight.setEnable(headlightOnOff);
if (headlightMenuItem != null)
headlightMenuItem.setState(headlightOnOff);
}
/**
* Gets the headlight on/off state.
*
* @return a boolean indicating if the headlight is on or off
*/
public boolean getHeadlightEnable() {
return headlightOnOff;
}
/**
* Sets the navigation type to be either Examine or Walk. The Examine
* navigation type sets up behaviors that use mouse drags to rotate and
* translate scene content as if it is an object held at arm's length and
* under examination. The Walk navigation type uses mouse drags to rotate
* and translate the viewer as if they are walking through the content. The
* Examine type is the default.
*
* @param nav
* either Walk or Examine
*/
public void setNavigationType(int nav) {
if (nav == Walk) {
navigationType = Walk;
if (walkMenuItem != null)
walkMenuItem.setState(true);
if (examineMenuItem != null)
examineMenuItem.setState(false);
if (walkBehavior != null)
walkBehavior.setEnable(true);
if (examineBehavior != null)
examineBehavior.setEnable(false);
} else {
navigationType = Examine;
if (walkMenuItem != null)
walkMenuItem.setState(false);
if (examineMenuItem != null)
examineMenuItem.setState(true);
if (walkBehavior != null)
walkBehavior.setEnable(false);
if (examineBehavior != null)
examineBehavior.setEnable(true);
}
}
/**
* Gets the current navigation type, returning either Walk or Examine.
*
* @return either Walk or Examine
*/
public int getNavigationType() {
return navigationType;
}
/**
* Sets whether the scene graph should be compiled or not. Normally this is
* always a good idea. For some example applications that use this Example
* framework, it is useful to disable compilation - particularly when nodes
* and node components will need to be made un-live in order to make
* changes. Once compiled, such components can be made un-live, but they are
* still unchangable unless appropriate capabilities have been set.
*
* @param onOff
* a boolean turning compilation on (true) or off (false)
*/
public void setCompilable(boolean onOff) {
shouldCompile = onOff;
}
/**
* Gets whether the scene graph will be compiled or not.
*
* @return a boolean indicating if scene graph compilation is on or off
*/
public boolean getCompilable() {
return shouldCompile;
}
//These methods will be replaced
// Set the view position and direction
public void setViewpoint(Point3f position, Vector3f direction) {
Transform3D t = new Transform3D();
t.set(new Vector3f(position));
exampleViewTransform.setTransform(t);
// how to set direction?
}
// Reset transforms
public void reset() {
Transform3D trans = new Transform3D();
exampleSceneTransform.setTransform(trans);
trans.set(new Vector3f(0.0f, 0.0f, 10.0f));
exampleViewTransform.setTransform(trans);
setNavigationType(navigationType);
}
//
// Gets the URL (with file: prepended) for the current directory.
// This is a terrible hack needed in the Alpha release of Java3D
// in order to build a full path URL for loading sounds with
// MediaContainer. When MediaContainer is fully implemented,
// it should handle relative path names, but not yet.
//
public String getCurrentDirectory() {
// Create a bogus file so that we can query it's path
File dummy = new File("dummy.tmp");
String dummyPath = dummy.getAbsolutePath();
// strip "/dummy.tmp" from end of dummyPath and put into 'path'
if (dummyPath.endsWith(File.separator + "dummy.tmp")) {
int index = dummyPath.lastIndexOf(File.separator + "dummy.tmp");
if (index >= 0) {
int pathLength = index + 5; // pre-pend 'file:'
char[] charPath = new char[pathLength];
dummyPath.getChars(0, index, charPath, 5);
String path = new String(charPath, 0, pathLength);
path = "file:" + path.substring(5, pathLength);
return path + File.separator;
}
}
return dummyPath + File.separator;
}
//--------------------------------------------------------------
// USER INTERFACE
//--------------------------------------------------------------
/**
* Builds the example AWT Frame menubar. Standard menus and their options
* are added. Applications that subclass this class should build their
* menubar additions within their initialize method.
*
* @return a MenuBar for the AWT Frame
*/
private MenuBar buildMenuBar() {
// Build the menubar
MenuBar menuBar = new MenuBar();
// File menu
Menu m = new Menu("File");
m.addActionListener(this);
m.add("Exit");
menuBar.add(m);
// View menu
m = new Menu("View");
m.addActionListener(this);
m.add("Reset view");
m.addSeparator();
walkMenuItem = new CheckboxMenuItem("Walk");
walkMenuItem.addItemListener(this);
m.add(walkMenuItem);
examineMenuItem = new CheckboxMenuItem("Examine");
examineMenuItem.addItemListener(this);
m.add(examineMenuItem);
if (navigationType == Walk) {
walkMenuItem.setState(true);
examineMenuItem.setState(false);
} else {
walkMenuItem.setState(false);
examineMenuItem.setState(true);
}
m.addSeparator();
headlightMenuItem = new CheckboxMenuItem("Headlight on/off");
headlightMenuItem.addItemListener(this);
headlightMenuItem.setState(headlightOnOff);
m.add(headlightMenuItem);
menuBar.add(m);
return menuBar;
}
/**
* Shows the application's frame, making it and its menubar, 3D canvas, and
* 3D content visible.
*/
public void showFrame() {
exampleFrame.show();
}
/**
* Quits the application.
*/
public void quit() {
System.exit(0);
}
/**
* Handles menu selections.
*
* @param event
* an ActionEvent indicating what menu action requires handling
*/
public void actionPerformed(ActionEvent event) {
String arg = event.getActionCommand();
if (arg.equals("Reset view"))
reset();
else if (arg.equals("Exit"))
quit();
}
/**
* Handles checkbox items on a CheckboxMenu. The Example class has none of
* its own, but subclasses may have some.
*
* @param menu
* which CheckboxMenu needs action
* @param check
* which CheckboxMenu item has changed
*/
public void checkboxChanged(CheckboxMenu menu, int check) {
// None for us
}
/**
* Handles on/off checkbox items on a standard menu.
*
* @param event
* an ItemEvent indicating what requires handling
*/
public void itemStateChanged(ItemEvent event) {
Object src = event.getSource();
boolean state;
if (src == headlightMenuItem) {
state = headlightMenuItem.getState();
headlight.setEnable(state);
} else if (src == walkMenuItem)
setNavigationType(Walk);
else if (src == examineMenuItem)
setNavigationType(Examine);
}
/**
* Handles a window closing event notifying the application that the user
* has chosen to close the application without selecting the "Exit" menu
* item.
*
* @param event
* a WindowEvent indicating the window is closing
*/
public void windowClosing(WindowEvent event) {
quit();
}
public void windowClosed(WindowEvent event) {
}
public void windowOpened(WindowEvent event) {
}
public void windowIconified(WindowEvent event) {
}
public void windowDeiconified(WindowEvent event) {
}
public void windowActivated(WindowEvent event) {
}
public void windowDeactivated(WindowEvent event) {
}
// Well known colors, positions, and directions
public final static Color3f White = new Color3f(1.0f, 1.0f, 1.0f);
public final static Color3f Gray = new Color3f(0.7f, 0.7f, 0.7f);
public final static Color3f DarkGray = new Color3f(0.2f, 0.2f, 0.2f);
public final static Color3f Black = new Color3f(0.0f, 0.0f, 0.0f);
public final static Color3f Red = new Color3f(1.0f, 0.0f, 0.0f);
public final static Color3f DarkRed = new Color3f(0.3f, 0.0f, 0.0f);
public final static Color3f Yellow = new Color3f(1.0f, 1.0f, 0.0f);
public final static Color3f DarkYellow = new Color3f(0.3f, 0.3f, 0.0f);
public final static Color3f Green = new Color3f(0.0f, 1.0f, 0.0f);
public final static Color3f DarkGreen = new Color3f(0.0f, 0.3f, 0.0f);
public final static Color3f Cyan = new Color3f(0.0f, 1.0f, 1.0f);
public final static Color3f Blue = new Color3f(0.0f, 0.0f, 1.0f);
public final static Color3f DarkBlue = new Color3f(0.0f, 0.0f, 0.3f);
public final static Color3f Magenta = new Color3f(1.0f, 0.0f, 1.0f);
public final static Vector3f PosX = new Vector3f(1.0f, 0.0f, 0.0f);
public final static Vector3f NegX = new Vector3f(-1.0f, 0.0f, 0.0f);
public final static Vector3f PosY = new Vector3f(0.0f, 1.0f, 0.0f);
public final static Vector3f NegY = new Vector3f(0.0f, -1.0f, 0.0f);
public final static Vector3f PosZ = new Vector3f(0.0f, 0.0f, 1.0f);
public final static Vector3f NegZ = new Vector3f(0.0f, 0.0f, -1.0f);
public final static Point3f Origin = new Point3f(0.0f, 0.0f, 0.0f);
public final static Point3f PlusX = new Point3f(0.75f, 0.0f, 0.0f);
public final static Point3f MinusX = new Point3f(-0.75f, 0.0f, 0.0f);
public final static Point3f PlusY = new Point3f(0.0f, 0.75f, 0.0f);
public final static Point3f MinusY = new Point3f(0.0f, -0.75f, 0.0f);
public final static Point3f PlusZ = new Point3f(0.0f, 0.0f, 0.75f);
public final static Point3f MinusZ = new Point3f(0.0f, 0.0f, -0.75f);
}
//
//INTERFACE
//CheckboxMenuListener - listen for checkbox change events
//
//DESCRIPTION
//The checkboxChanged method is called by users of this class
//to notify the listener when a checkbox choice has changed on
//a CheckboxMenu class menu.
//
interface CheckboxMenuListener extends EventListener {
public void checkboxChanged(CheckboxMenu menu, int check);
}
/**
* ExamineViewerBehavior
*
* @version 1.0, 98/04/16
*/
/**
* Wakeup on mouse button presses, releases, and mouse movements and generate
* transforms in an "examination style" that enables the user to rotate,
* translation, and zoom an object as if it is held at arm's length. Such an
* examination style is similar to the "Examine" navigation type used by VRML
* browsers.
*
* The behavior maps mouse drags to different transforms depending upon the
* mosue button held down:
*
* Button 1 (left) Horizontal movement --> Y-axis rotation Vertical movement -->
* X-axis rotation
*
* Button 2 (middle) Horizontal movement --> nothing Vertical movement -->
* Z-axis translation
*
* Button 3 (right) Horizontal movement --> X-axis translation Vertical movement
* --> Y-axis translation
*
* To support systems with 2 or 1 mouse buttons, the following alternate
* mappings are supported while dragging with any mouse button held down and
* zero or more keyboard modifiers held down:
*
* No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3
*
* The behavior automatically modifies a TransformGroup provided to the
* constructor. The TransformGroup's transform can be set at any time by the
* application or other behaviors to cause the examine rotation and translation
* to be reset.
*/
// This class is inspired by the MouseBehavior, MouseRotate,
// MouseTranslate, and MouseZoom utility behaviors provided with
// Java 3D. This class differs from those utilities in that it:
//
// (a) encapsulates all three behaviors into one in order to
// enforce a specific "Examine" symantic
//
// (b) supports set/get of the rotation and translation factors
// that control the speed of movement.
//
// (c) supports the "Control" modifier as an alternative to the
// "Meta" modifier not present on PC, Mac, and most non-Sun
// keyboards. This makes button3 behavior usable on PCs,
// Macs, and other systems with fewer than 3 mouse buttons.
class ExamineViewerBehavior extends ViewerBehavior {
// Previous cursor location
protected int previousX = 0;
protected int previousY = 0;
// Saved standard cursor
protected Cursor savedCursor = null;
/**
* Construct an examine behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into a
* transform group given later with the setTransformGroup( ) method.
*/
public ExamineViewerBehavior() {
super();
}
/**
* Construct an examine behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into a
* transform group given later with the setTransformGroup( ) method.
*
* @param parent
* The AWT Component that contains the area generating mouse
* events.
*/
public ExamineViewerBehavior(Component parent) {
super(parent);
}
/**
* Construct an examine behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into the
* given transform group.
*
* @param transformGroup
* The transform group to be modified by the behavior.
*/
public ExamineViewerBehavior(TransformGroup transformGroup) {
super();
subjectTransformGroup = transformGroup;
}
/**
* Construct an examine behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into the
* given transform group.
*
* @param transformGroup
* The transform group to be modified by the behavior.
* @param parent
* The AWT Component that contains the area generating mouse
* events.
*/
public ExamineViewerBehavior(TransformGroup transformGroup, Component parent) {
super(parent);
subjectTransformGroup = transformGroup;
}
/**
* Respond to a button1 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public void onButton1(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position
previousX = x;
previousY = y;
// Change to a "move" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.HAND_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: do nothing
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
//
// Mouse moved while button down: create a rotation
//
// Compute the delta in X and Y from the previous
// position. Use the delta to compute rotation
// angles with the mapping:
//
// positive X mouse delta --> positive Y-axis rotation
// positive Y mouse delta --> positive X-axis rotation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
int deltaX = x - previousX;
int deltaY = y - previousY;
if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA
|| deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) {
// Deltas are too huge to be believable. Probably a glitch.
// Don't record the new XY location, or do anything.
return;
}
double xRotationAngle = deltaY * XRotationFactor;
double yRotationAngle = deltaX * YRotationFactor;
//
// Build transforms
//
transform1.rotX(xRotationAngle);
transform2.rotY(yRotationAngle);
// Get and save the current transform matrix
subjectTransformGroup.getTransform(currentTransform);
currentTransform.get(matrix);
translate.set(matrix.m03, matrix.m13, matrix.m23);
// Translate to the origin, rotate, then translate back
currentTransform.setTranslation(origin);
currentTransform.mul(transform1, currentTransform);
currentTransform.mul(transform2, currentTransform);
currentTransform.setTranslation(translate);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
previousX = x;
previousY = y;
}
/**
* Respond to a button2 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public void onButton2(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position
previousX = x;
previousY = y;
// Change to a "move" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.MOVE_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: do nothing
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
//
// Mouse moved while button down: create a translation
//
// Compute the delta in Y from the previous
// position. Use the delta to compute translation
// distances with the mapping:
//
// positive Y mouse delta --> positive Y-axis translation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
int deltaY = y - previousY;
if (deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) {
// Deltas are too huge to be believable. Probably a glitch.
// Don't record the new XY location, or do anything.
return;
}
double zTranslationDistance = deltaY * ZTranslationFactor;
//
// Build transforms
//
translate.set(0.0, 0.0, zTranslationDistance);
transform1.set(translate);
// Get and save the current transform
subjectTransformGroup.getTransform(currentTransform);
// Translate as needed
currentTransform.mul(transform1, currentTransform);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
previousX = x;
previousY = y;
}
/**
* Respond to a button3 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public void onButton3(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position
previousX = x;
previousY = y;
// Change to a "move" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.MOVE_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: do nothing
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
//
// Mouse moved while button down: create a translation
//
// Compute the delta in X and Y from the previous
// position. Use the delta to compute translation
// distances with the mapping:
//
// positive X mouse delta --> positive X-axis translation
// positive Y mouse delta --> negative Y-axis translation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
int deltaX = x - previousX;
int deltaY = y - previousY;
if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA
|| deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) {
// Deltas are too huge to be believable. Probably a glitch.
// Don't record the new XY location, or do anything.
return;
}
double xTranslationDistance = deltaX * XTranslationFactor;
double yTranslationDistance = -deltaY * YTranslationFactor;
//
// Build transforms
//
translate.set(xTranslationDistance, yTranslationDistance, 0.0);
transform1.set(translate);
// Get and save the current transform
subjectTransformGroup.getTransform(currentTransform);
// Translate as needed
currentTransform.mul(transform1, currentTransform);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
previousX = x;
previousY = y;
}
/**
* Respond to an elapsed frames event (assuming subclass has set up a wakeup
* criterion for it).
*
* @param time
* A WakeupOnElapsedFrames criterion to respond to.
*/
public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) {
// Can't happen
}
}
/*
*
* Copyright (c) 1998 David R. Nadeau
*
*/
/**
* WalkViewerBehavior is a utility class that creates a "walking style"
* navigation symantic.
*
* The behavior wakes up on mouse button presses, releases, and mouse movements
* and generates transforms in a "walk style" that enables the user to walk
* through a scene, translating and turning about as if they are within the
* scene. Such a walk style is similar to the "Walk" navigation type used by
* VRML browsers.
*
* The behavior maps mouse drags to different transforms depending upon the
* mouse button held down:
*
* - Button 1 (left)
* - Horizontal movement --> Y-axis rotation
* - Vertical movement --> Z-axis translation
*
* - Button 2 (middle)
* - Horizontal movement --> Y-axis rotation
* - Vertical movement --> X-axis rotation
*
* - Button 3 (right)
* - Horizontal movement --> X-axis translation
* - Vertical movement --> Y-axis translation
*
*
* To support systems with 2 or 1 mouse buttons, the following alternate
* mappings are supported while dragging with any mouse button held down and
* zero or more keyboard modifiers held down:
*
* - No modifiers = Button 1
* - ALT = Button 2
* - Meta = Button 3
* - Control = Button 3
*
* The behavior automatically modifies a TransformGroup provided to the
* constructor. The TransformGroup's transform can be set at any time by the
* application or other behaviors to cause the walk rotation and translation to
* be reset.
*
* While a mouse button is down, the behavior automatically changes the cursor
* in a given parent AWT Component. If no parent Component is given, no cursor
* changes are attempted.
*
* @version 1.0, 98/04/16
* @author David R. Nadeau, San Diego Supercomputer Center
*/
class WalkViewerBehavior extends ViewerBehavior {
// This class is inspired by the MouseBehavior, MouseRotate,
// MouseTranslate, and MouseZoom utility behaviors provided with
// Java 3D. This class differs from those utilities in that it:
//
// (a) encapsulates all three behaviors into one in order to
// enforce a specific "Walk" symantic
//
// (b) supports set/get of the rotation and translation factors
// that control the speed of movement.
//
// (c) supports the "Control" modifier as an alternative to the
// "Meta" modifier not present on PC, Mac, and most non-Sun
// keyboards. This makes button3 behavior usable on PCs,
// Macs, and other systems with fewer than 3 mouse buttons.
// Previous and initial cursor locations
protected int previousX = 0;
protected int previousY = 0;
protected int initialX = 0;
protected int initialY = 0;
// Deadzone size (delta from initial XY for which no
// translate or rotate action is taken
protected static final int DELTAX_DEADZONE = 10;
protected static final int DELTAY_DEADZONE = 10;
// Keep a set of wakeup criterion for animation-generated
// event types.
protected WakeupCriterion[] mouseAndAnimationEvents = null;
protected WakeupOr mouseAndAnimationCriterion = null;
protected WakeupOr savedMouseCriterion = null;
// Saved standard cursor
protected Cursor savedCursor = null;
/**
* Default Rotation and translation scaling factors for animated movements
* (Button 1 press).
*/
public static final double DEFAULT_YROTATION_ANIMATION_FACTOR = 0.0002;
public static final double DEFAULT_ZTRANSLATION_ANIMATION_FACTOR = 0.01;
protected double YRotationAnimationFactor = DEFAULT_YROTATION_ANIMATION_FACTOR;
protected double ZTranslationAnimationFactor = DEFAULT_ZTRANSLATION_ANIMATION_FACTOR;
/**
* Constructs a new walk behavior that converts mouse actions into rotations
* and translations. Rotations and translations are written into a
* TransformGroup that must be set using the setTransformGroup method. The
* cursor will be changed during mouse actions if the parent frame is set
* using the setParentComponent method.
*
* @return a new WalkViewerBehavior that needs its TransformGroup and parent
* Component set
*/
public WalkViewerBehavior() {
super();
}
/**
* Constructs a new walk behavior that converts mouse actions into rotations
* and translations. Rotations and translations are written into a
* TransformGroup that must be set using the setTransformGroup method. The
* cursor will be changed within the given AWT parent Component during mouse
* drags.
*
* @param parent
* a parent AWT Component within which the cursor will change
* during mouse drags
*
* @return a new WalkViewerBehavior that needs its TransformGroup and parent
* Component set
*/
public WalkViewerBehavior(Component parent) {
super(parent);
}
/**
* Constructs a new walk behavior that converts mouse actions into rotations
* and translations. Rotations and translations are written into the given
* TransformGroup. The cursor will be changed during mouse actions if the
* parent frame is set using the setParentComponent method.
*
* @param transformGroup
* a TransformGroup whos transform is read and written by the
* behavior
*
* @return a new WalkViewerBehavior that needs its TransformGroup and parent
* Component set
*/
public WalkViewerBehavior(TransformGroup transformGroup) {
super();
subjectTransformGroup = transformGroup;
}
/**
* Constructs a new walk behavior that converts mouse actions into rotations
* and translations. Rotations and translations are written into the given
* TransformGroup. The cursor will be changed within the given AWT parent
* Component during mouse drags.
*
* @param transformGroup
* a TransformGroup whos transform is read and written by the
* behavior
*
* @param parent
* a parent AWT Component within which the cursor will change
* during mouse drags
*
* @return a new WalkViewerBehavior that needs its TransformGroup and parent
* Component set
*/
public WalkViewerBehavior(TransformGroup transformGroup, Component parent) {
super(parent);
subjectTransformGroup = transformGroup;
}
/**
* Initializes the behavior.
*/
public void initialize() {
super.initialize();
savedMouseCriterion = mouseCriterion; // from parent class
mouseAndAnimationEvents = new WakeupCriterion[4];
mouseAndAnimationEvents[0] = new WakeupOnAWTEvent(
MouseEvent.MOUSE_DRAGGED);
mouseAndAnimationEvents[1] = new WakeupOnAWTEvent(
MouseEvent.MOUSE_PRESSED);
mouseAndAnimationEvents[2] = new WakeupOnAWTEvent(
MouseEvent.MOUSE_RELEASED);
mouseAndAnimationEvents[3] = new WakeupOnElapsedFrames(0);
mouseAndAnimationCriterion = new WakeupOr(mouseAndAnimationEvents);
// Don't use the above criterion until a button 1 down event
}
/**
* Sets the Y rotation animation scaling factor for Y-axis rotations. This
* scaling factor is used to control the speed of Y rotation when button 1
* is pressed and dragged.
*
* @param factor
* the double Y rotation scaling factor
*/
public void setYRotationAnimationFactor(double factor) {
YRotationAnimationFactor = factor;
}
/**
* Gets the current Y animation rotation scaling factor for Y-axis
* rotations.
*
* @return the double Y rotation scaling factor
*/
public double getYRotationAnimationFactor() {
return YRotationAnimationFactor;
}
/**
* Sets the Z animation translation scaling factor for Z-axis translations.
* This scaling factor is used to control the speed of Z translation when
* button 1 is pressed and dragged.
*
* @param factor
* the double Z translation scaling factor
*/
public void setZTranslationAnimationFactor(double factor) {
ZTranslationAnimationFactor = factor;
}
/**
* Gets the current Z animation translation scaling factor for Z-axis
* translations.
*
* @return the double Z translation scaling factor
*/
public double getZTranslationAnimationFactor() {
return ZTranslationAnimationFactor;
}
/**
* Responds to an elapsed frames event. Such an event is generated on every
* frame while button 1 is held down. On each call, this method computes new
* Y-axis rotation and Z-axis translation values and writes them to the
* behavior's TransformGroup. The translation and rotation amounts are
* computed based upon the distance between the current cursor location and
* the cursor location when button 1 was pressed. As this distance
* increases, the translation or rotation amount increases.
*
* @param time
* the WakeupOnElapsedFrames criterion to respond to
*/
public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) {
//
// Time elapsed while button down: create a rotation and
// a translation.
//
// Compute the delta in X and Y from the initial position to
// the previous position. Multiply the delta times a scaling
// factor to compute an offset to add to the current translation
// and rotation. Use the mapping:
//
// positive X mouse delta --> negative Y-axis rotation
// positive Y mouse delta --> positive Z-axis translation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
if (buttonPressed != BUTTON1)
return;
int deltaX = previousX - initialX;
int deltaY = previousY - initialY;
double yRotationAngle = -deltaX * YRotationAnimationFactor;
double zTranslationDistance = deltaY * ZTranslationAnimationFactor;
//
// Build transforms
//
transform1.rotY(yRotationAngle);
translate.set(0.0, 0.0, zTranslationDistance);
// Get and save the current transform matrix
subjectTransformGroup.getTransform(currentTransform);
currentTransform.get(matrix);
// Translate to the origin, rotate, then translate back
currentTransform.setTranslation(origin);
currentTransform.mul(transform1, currentTransform);
// Translate back from the origin by the original translation
// distance, plus the new walk translation... but force walk
// to travel on a plane by ignoring the Y component of a
// transformed translation vector.
currentTransform.transform(translate);
translate.x += matrix.m03; // add in existing X translation
translate.y = matrix.m13; // use Y translation
translate.z += matrix.m23; // add in existing Z translation
currentTransform.setTranslation(translate);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
}
/**
* Responds to a button1 event (press, release, or drag). On a press, the
* method adds a wakeup criterion to the behavior's set, callling for the
* behavior to be awoken on each frame. On a button prelease, this criterion
* is removed from the set.
*
* @param mouseEvent
* the MouseEvent to respond to
*/
public void onButton1(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position and change
// the wakeup criterion to include elapsed time wakeups
// so we can animate.
previousX = x;
previousY = y;
initialX = x;
initialY = y;
// Swap criterion... parent class will not reschedule us
mouseCriterion = mouseAndAnimationCriterion;
// Change to a "move" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.HAND_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: restore original wakeup
// criterion which only includes mouse activity, not
// elapsed time
mouseCriterion = savedMouseCriterion;
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
previousX = x;
previousY = y;
}
/**
* Responds to a button2 event (press, release, or drag). On a press, the
* method records the initial cursor location. On a drag, the difference
* between the current and previous cursor location provides a delta that
* controls the amount by which to rotate in X and Y.
*
* @param mouseEvent
* the MouseEvent to respond to
*/
public void onButton2(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position
previousX = x;
previousY = y;
initialX = x;
initialY = y;
// Change to a "rotate" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.MOVE_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: do nothing
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
//
// Mouse moved while button down: create a rotation
//
// Compute the delta in X and Y from the previous
// position. Use the delta to compute rotation
// angles with the mapping:
//
// positive X mouse delta --> negative Y-axis rotation
// positive Y mouse delta --> negative X-axis rotation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
int deltaX = x - previousX;
int deltaY = 0;
if (Math.abs(y - initialY) > DELTAY_DEADZONE) {
// Cursor has moved far enough vertically to consider
// it intentional, so get it's delta.
deltaY = y - previousY;
}
if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA
|| deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) {
// Deltas are too huge to be believable. Probably a glitch.
// Don't record the new XY location, or do anything.
return;
}
double xRotationAngle = -deltaY * XRotationFactor;
double yRotationAngle = -deltaX * YRotationFactor;
//
// Build transforms
//
transform1.rotX(xRotationAngle);
transform2.rotY(yRotationAngle);
// Get and save the current transform matrix
subjectTransformGroup.getTransform(currentTransform);
currentTransform.get(matrix);
translate.set(matrix.m03, matrix.m13, matrix.m23);
// Translate to the origin, rotate, then translate back
currentTransform.setTranslation(origin);
currentTransform.mul(transform2, currentTransform);
currentTransform.mul(transform1);
currentTransform.setTranslation(translate);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
previousX = x;
previousY = y;
}
/**
* Responds to a button3 event (press, release, or drag). On a drag, the
* difference between the current and previous cursor location provides a
* delta that controls the amount by which to translate in X and Y.
*
* @param mouseEvent
* the MouseEvent to respond to
*/
public void onButton3(MouseEvent mev) {
if (subjectTransformGroup == null)
return;
int x = mev.getX();
int y = mev.getY();
if (mev.getID() == MouseEvent.MOUSE_PRESSED) {
// Mouse button pressed: record position
previousX = x;
previousY = y;
// Change to a "move" cursor
if (parentComponent != null) {
savedCursor = parentComponent.getCursor();
parentComponent.setCursor(Cursor
.getPredefinedCursor(Cursor.MOVE_CURSOR));
}
return;
}
if (mev.getID() == MouseEvent.MOUSE_RELEASED) {
// Mouse button released: do nothing
// Switch the cursor back
if (parentComponent != null)
parentComponent.setCursor(savedCursor);
return;
}
//
// Mouse moved while button down: create a translation
//
// Compute the delta in X and Y from the previous
// position. Use the delta to compute translation
// distances with the mapping:
//
// positive X mouse delta --> positive X-axis translation
// positive Y mouse delta --> negative Y-axis translation
//
// where positive X mouse movement is to the right, and
// positive Y mouse movement is **down** the screen.
//
int deltaX = x - previousX;
int deltaY = y - previousY;
if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA
|| deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) {
// Deltas are too huge to be believable. Probably a glitch.
// Don't record the new XY location, or do anything.
return;
}
double xTranslationDistance = deltaX * XTranslationFactor;
double yTranslationDistance = -deltaY * YTranslationFactor;
//
// Build transforms
//
translate.set(xTranslationDistance, yTranslationDistance, 0.0);
transform1.set(translate);
// Get and save the current transform
subjectTransformGroup.getTransform(currentTransform);
// Translate as needed
currentTransform.mul(transform1);
// Update the transform group
subjectTransformGroup.setTransform(currentTransform);
previousX = x;
previousY = y;
}
}
//
//CLASS
//CheckboxMenu - build a menu of grouped checkboxes
//
//DESCRIPTION
//The class creates a menu with one or more CheckboxMenuItem's
//and monitors that menu. When a menu checkbox is picked, the
//previous one is turned off (in radio-button style). Then,
//a given listener's checkboxChanged method is called, passing it
//the menu and the item checked.
//
class CheckboxMenu extends Menu implements ItemListener {
// State
protected CheckboxMenuItem[] checks = null;
protected int current = 0;
protected CheckboxMenuListener listener = null;
// Construct
public CheckboxMenu(String name, NameValue[] items,
CheckboxMenuListener listen) {
this(name, items, 0, listen);
}
public CheckboxMenu(String name, NameValue[] items, int cur,
CheckboxMenuListener listen) {
super(name);
current = cur;
listener = listen;
if (items == null)
return;
checks = new CheckboxMenuItem[items.length];
for (int i = 0; i < items.length; i++) {
checks[i] = new CheckboxMenuItem(items[i].name, false);
checks[i].addItemListener(this);
add(checks[i]);
}
checks[cur].setState(true);
}
// Handle checkbox changed events
public void itemStateChanged(ItemEvent event) {
Object src = event.getSource();
for (int i = 0; i < checks.length; i++) {
if (src == checks[i]) {
// Update the checkboxes
checks[current].setState(false);
current = i;
checks[current].setState(true);
if (listener != null)
listener.checkboxChanged(this, i);
return;
}
}
}
// Methods to get and set state
public int getCurrent() {
return current;
}
public void setCurrent(int cur) {
if (cur < 0 || cur >= checks.length)
return; // ignore out of range choices
if (checks == null)
return;
checks[current].setState(false);
current = cur;
checks[current].setState(true);
}
public CheckboxMenuItem getSelectedCheckbox() {
if (checks == null)
return null;
return checks[current];
}
public void setSelectedCheckbox(CheckboxMenuItem item) {
if (checks == null)
return;
for (int i = 0; i < checks.length; i++) {
if (item == checks[i]) {
checks[i].setState(false);
current = i;
checks[i].setState(true);
}
}
}
}
/**
* ViewerBehavior
*
* @version 1.0, 98/04/16
*/
/**
* Wakeup on mouse button presses, releases, and mouse movements and generate
* transforms for a transform group. Classes that extend this class impose
* specific symantics, such as "Examine" or "Walk" viewing, similar to the
* navigation types used by VRML browsers.
*
* To support systems with 2 or 1 mouse buttons, the following alternate
* mappings are supported while dragging with any mouse button held down and
* zero or more keyboard modifiers held down:
*
* No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3
*
* The behavior automatically modifies a TransformGroup provided to the
* constructor. The TransformGroup's transform can be set at any time by the
* application or other behaviors to cause the viewer's rotation and translation
* to be reset.
*/
// This class is inspired by the MouseBehavior, MouseRotate,
// MouseTranslate, and MouseZoom utility behaviors provided with
// Java 3D. This class differs from those utilities in that it:
//
// (a) encapsulates all three behaviors into one in order to
// enforce a specific viewing symantic
//
// (b) supports set/get of the rotation and translation factors
// that control the speed of movement.
//
// (c) supports the "Control" modifier as an alternative to the
// "Meta" modifier not present on PC, Mac, and most non-Sun
// keyboards. This makes button3 behavior usable on PCs,
// Macs, and other systems with fewer than 3 mouse buttons.
abstract class ViewerBehavior extends Behavior {
// Keep track of the transform group who's transform we modify
// during mouse motion.
protected TransformGroup subjectTransformGroup = null;
// Keep a set of wakeup criterion for different mouse-generated
// event types.
protected WakeupCriterion[] mouseEvents = null;
protected WakeupOr mouseCriterion = null;
// Track which button was last pressed
protected static final int BUTTONNONE = -1;
protected static final int BUTTON1 = 0;
protected static final int BUTTON2 = 1;
protected static final int BUTTON3 = 2;
protected int buttonPressed = BUTTONNONE;
// Keep a few Transform3Ds for use during event processing. This
// avoids having to allocate new ones on each event.
protected Transform3D currentTransform = new Transform3D();
protected Transform3D transform1 = new Transform3D();
protected Transform3D transform2 = new Transform3D();
protected Matrix4d matrix = new Matrix4d();
protected Vector3d origin = new Vector3d(0.0, 0.0, 0.0);
protected Vector3d translate = new Vector3d(0.0, 0.0, 0.0);
// Unusual X and Y delta limits.
protected static final int UNUSUAL_XDELTA = 400;
protected static final int UNUSUAL_YDELTA = 400;
protected Component parentComponent = null;
/**
* Construct a viewer behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into a
* transform group given later with the setTransformGroup( ) method.
*/
public ViewerBehavior() {
super();
}
/**
* Construct a viewer behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into a
* transform group given later with the setTransformGroup( ) method.
*
* @param parent
* The AWT Component that contains the area generating mouse
* events.
*/
public ViewerBehavior(Component parent) {
super();
parentComponent = parent;
}
/**
* Construct a viewer behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into the
* given transform group.
*
* @param transformGroup
* The transform group to be modified by the behavior.
*/
public ViewerBehavior(TransformGroup transformGroup) {
super();
subjectTransformGroup = transformGroup;
}
/**
* Construct a viewer behavior that listens to mouse movement and button
* presses to generate rotation and translation transforms written into the
* given transform group.
*
* @param transformGroup
* The transform group to be modified by the behavior.
* @param parent
* The AWT Component that contains the area generating mouse
* events.
*/
public ViewerBehavior(TransformGroup transformGroup, Component parent) {
super();
subjectTransformGroup = transformGroup;
parentComponent = parent;
}
/**
* Set the transform group modified by the viewer behavior. Setting the
* transform group to null disables the behavior until the transform group
* is again set to an existing group.
*
* @param transformGroup
* The new transform group to be modified by the behavior.
*/
public void setTransformGroup(TransformGroup transformGroup) {
subjectTransformGroup = transformGroup;
}
/**
* Get the transform group modified by the viewer behavior.
*/
public TransformGroup getTransformGroup() {
return subjectTransformGroup;
}
/**
* Sets the parent component who's cursor will be changed during mouse
* drags. If no component is given is given to the constructor, or set via
* this method, no cursor changes will be done.
*
* @param parent
* the AWT Component, such as a Frame, within which cursor
* changes should take place during mouse drags
*/
public void setParentComponent(Component parent) {
parentComponent = parent;
}
/*
* Gets the parent frame within which the cursor changes during mouse drags.
*
* @return the AWT Component, such as a Frame, within which cursor changes
* should take place during mouse drags. Returns null if no parent is set.
*/
public Component getParentComponent() {
return parentComponent;
}
/**
* Initialize the behavior.
*/
public void initialize() {
// Wakeup when the mouse is dragged or when a mouse button
// is pressed or released.
mouseEvents = new WakeupCriterion[3];
mouseEvents[0] = new WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED);
mouseEvents[1] = new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED);
mouseEvents[2] = new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED);
mouseCriterion = new WakeupOr(mouseEvents);
wakeupOn(mouseCriterion);
}
/**
* Process a new wakeup. Interpret mouse button presses, releases, and mouse
* drags.
*
* @param criteria
* The wakeup criteria causing the behavior wakeup.
*/
public void processStimulus(Enumeration criteria) {
WakeupCriterion wakeup = null;
AWTEvent[] event = null;
int whichButton = BUTTONNONE;
// Process all pending wakeups
while (criteria.hasMoreElements()) {
wakeup = (WakeupCriterion) criteria.nextElement();
if (wakeup instanceof WakeupOnAWTEvent) {
event = ((WakeupOnAWTEvent) wakeup).getAWTEvent();
// Process all pending events
for (int i = 0; i < event.length; i++) {
if (event[i].getID() != MouseEvent.MOUSE_PRESSED
&& event[i].getID() != MouseEvent.MOUSE_RELEASED
&& event[i].getID() != MouseEvent.MOUSE_DRAGGED)
// Ignore uninteresting mouse events
continue;
//
// Regretably, Java event handling (or perhaps
// underlying OS event handling) doesn't always
// catch button bounces (redundant presses and
// releases), or order events so that the last
// drag event is delivered before a release.
// This means we can get stray events that we
// filter out here.
//
if (event[i].getID() == MouseEvent.MOUSE_PRESSED
&& buttonPressed != BUTTONNONE)
// Ignore additional button presses until a release
continue;
if (event[i].getID() == MouseEvent.MOUSE_RELEASED
&& buttonPressed == BUTTONNONE)
// Ignore additional button releases until a press
continue;
if (event[i].getID() == MouseEvent.MOUSE_DRAGGED
&& buttonPressed == BUTTONNONE)
// Ignore drags until a press
continue;
MouseEvent mev = (MouseEvent) event[i];
int modifiers = mev.getModifiers();
//
// Unfortunately, the underlying event handling
// doesn't do a "grab" operation when a mouse button
// is pressed. This means that once a button is
// pressed, if another mouse button or a keyboard
// modifier key is pressed, the delivered mouse event
// will show that a different button is being held
// down. For instance:
//
// Action Event
// Button 1 press Button 1 press
// Drag with button 1 down Button 1 drag
// ALT press -
// Drag with ALT & button 1 down Button 2 drag
// Button 1 release Button 2 release
//
// The upshot is that we can get a button press
// without a matching release, and the button
// associated with a drag can change mid-drag.
//
// To fix this, we watch for an initial button
// press, and thenceforth consider that button
// to be the one held down, even if additional
// buttons get pressed, and despite what is
// reported in the event. Only when a button is
// released, do we end such a grab.
//
if (buttonPressed == BUTTONNONE) {
// No button is pressed yet, figure out which
// button is down now and how to direct events
if (((modifiers & InputEvent.BUTTON3_MASK) != 0)
|| (((modifiers & InputEvent.BUTTON1_MASK) != 0) && ((modifiers & InputEvent.CTRL_MASK) == InputEvent.CTRL_MASK))) {
// Button 3 activity (META or CTRL down)
whichButton = BUTTON3;
} else if ((modifiers & InputEvent.BUTTON2_MASK) != 0) {
// Button 2 activity (ALT down)
whichButton = BUTTON2;
} else {
// Button 1 activity (no modifiers down)
whichButton = BUTTON1;
}
// If the event is to press a button, then
// record that that button is now down
if (event[i].getID() == MouseEvent.MOUSE_PRESSED)
buttonPressed = whichButton;
} else {
// Otherwise a button was pressed earlier and
// hasn't been released yet. Assign all further
// events to it, even if ALT, META, CTRL, or
// another button has been pressed as well.
whichButton = buttonPressed;
}
// Distribute the event
switch (whichButton) {
case BUTTON1:
onButton1(mev);
break;
case BUTTON2:
onButton2(mev);
break;
case BUTTON3:
onButton3(mev);
break;
default:
break;
}
// If the event is to release a button, then
// record that that button is now up
if (event[i].getID() == MouseEvent.MOUSE_RELEASED)
buttonPressed = BUTTONNONE;
}
continue;
}
if (wakeup instanceof WakeupOnElapsedFrames) {
onElapsedFrames((WakeupOnElapsedFrames) wakeup);
continue;
}
}
// Reschedule us for another wakeup
wakeupOn(mouseCriterion);
}
/**
* Default X and Y rotation factors, and XYZ translation factors.
*/
public static final double DEFAULT_XROTATION_FACTOR = 0.02;
public static final double DEFAULT_YROTATION_FACTOR = 0.005;
public static final double DEFAULT_XTRANSLATION_FACTOR = 0.02;
public static final double DEFAULT_YTRANSLATION_FACTOR = 0.02;
public static final double DEFAULT_ZTRANSLATION_FACTOR = 0.04;
protected double XRotationFactor = DEFAULT_XROTATION_FACTOR;
protected double YRotationFactor = DEFAULT_YROTATION_FACTOR;
protected double XTranslationFactor = DEFAULT_XTRANSLATION_FACTOR;
protected double YTranslationFactor = DEFAULT_YTRANSLATION_FACTOR;
protected double ZTranslationFactor = DEFAULT_ZTRANSLATION_FACTOR;
/**
* Set the X rotation scaling factor for X-axis rotations.
*
* @param factor
* The new scaling factor.
*/
public void setXRotationFactor(double factor) {
XRotationFactor = factor;
}
/**
* Get the current X rotation scaling factor for X-axis rotations.
*/
public double getXRotationFactor() {
return XRotationFactor;
}
/**
* Set the Y rotation scaling factor for Y-axis rotations.
*
* @param factor
* The new scaling factor.
*/
public void setYRotationFactor(double factor) {
YRotationFactor = factor;
}
/**
* Get the current Y rotation scaling factor for Y-axis rotations.
*/
public double getYRotationFactor() {
return YRotationFactor;
}
/**
* Set the X translation scaling factor for X-axis translations.
*
* @param factor
* The new scaling factor.
*/
public void setXTranslationFactor(double factor) {
XTranslationFactor = factor;
}
/**
* Get the current X translation scaling factor for X-axis translations.
*/
public double getXTranslationFactor() {
return XTranslationFactor;
}
/**
* Set the Y translation scaling factor for Y-axis translations.
*
* @param factor
* The new scaling factor.
*/
public void setYTranslationFactor(double factor) {
YTranslationFactor = factor;
}
/**
* Get the current Y translation scaling factor for Y-axis translations.
*/
public double getYTranslationFactor() {
return YTranslationFactor;
}
/**
* Set the Z translation scaling factor for Z-axis translations.
*
* @param factor
* The new scaling factor.
*/
public void setZTranslationFactor(double factor) {
ZTranslationFactor = factor;
}
/**
* Get the current Z translation scaling factor for Z-axis translations.
*/
public double getZTranslationFactor() {
return ZTranslationFactor;
}
/**
* Respond to a button1 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public abstract void onButton1(MouseEvent mouseEvent);
/**
* Respond to a button2 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public abstract void onButton2(MouseEvent mouseEvent);
/**
* Responed to a button3 event (press, release, or drag).
*
* @param mouseEvent
* A MouseEvent to respond to.
*/
public abstract void onButton3(MouseEvent mouseEvent);
/**
* Respond to an elapsed frames event (assuming subclass has set up a wakeup
* criterion for it).
*
* @param time
* A WakeupOnElapsedFrames criterion to respond to.
*/
public abstract void onElapsedFrames(WakeupOnElapsedFrames timeEvent);
}
//
//CLASS
//NameValue - create a handy name-value pair
//
//DESCRIPTION
//It is frequently handy to have one or more name-value pairs
//with which to store named colors, named positions, named textures,
//and so forth. Several of the examples use this class.
//
//AUTHOR
//David R. Nadeau / San Diego Supercomputer Center
//
class NameValue {
public String name;
public Object value;
public NameValue(String n, Object v) {
name = n;
value = v;
}
}