Email Java

/****************************************************************
 * Licensed to the Apache Software Foundation (ASF) under one   *
 * or more contributor license agreements.  See the NOTICE file *
 * distributed with this work for additional information        *
 * regarding copyright ownership.  The ASF licenses this file   *
 * to you under the Apache License, Version 2.0 (the            *
 * "License"); you may not use this file except in compliance   *
 * with the License.  You may obtain a copy of the License at   *
 *                                                              *
 *   http://www.apache.org/licenses/LICENSE-2.0                 *
 *                                                              *
 * Unless required by applicable law or agreed to in writing,   *
 * software distributed under the License is distributed on an  *
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY       *
 * KIND, either express or implied.  See the License for the    *
 * specific language governing permissions and limitations      *
 * under the License.                                           *
 ****************************************************************/
// Revised from apache james
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Collection;
import java.util.ArrayList;
import java.io.Reader;
import java.io.StreamTokenizer;
import java.io.StringReader;
/**
 * 

Determines probability that text contains Spam.


 *
 * 

Based upon Paul Grahams' A Plan for Spam.
 * Extended to Paul Grahams' Better Bayesian Filtering.


 *
 * 

Sample method usage:


 *
 * 

Use:
 *   void addHam(Reader)
 *   and
 *   void addSpam(Reader)
 *
 *   methods to build up the Maps of ham & spam tokens/occurrences.
 *   Both addHam and addSpam assume they're reading one message at a time,
 *   if you feed more than one message per call, be sure to adjust the
 *   appropriate message counter:  hamMessageCount or spamMessageCount.
 *
 *   Then...


 *
 * 

Use:
 *   void buildCorpus()
 *
 *   to build the final token/probabilities Map.
 *
 *   Use your own methods for persistent storage of either the individual
 *   ham/spam corpus & message counts, and/or the final corpus.
 *
 *   Then you can...


 *
 * 

Use:
 *   double computeSpamProbability(Reader)
 *
 *   to determine the probability that a particular text contains spam.
 *   A returned result of 0.9 or above is an indicator that the text was
 *   spam.


 *
 * 

If you use persistent storage, use:
 *   void setCorpus(Map)
 *
 * before calling computeSpamProbability.


 *
 * @version CVS $Revision: $ $Date: $
 * @since 2.3.0
 */
public class BayesianAnalyzer {
    
    /**
     * Number of "interesting" tokens to use to compute overall
     * spamminess probability.
     */
    private final static int MAX_INTERESTING_TOKENS = 15;
    
    /**
     * Minimum probability distance from 0.5 to consider a token "interesting" to use to compute overall
     * spamminess probability.
     */
    private final static double INTERESTINGNESS_THRESHOLD = 0.46;
    
    /**
     * Default token probability to use when a token has not been
     * encountered before.
     */
    private final static double DEFAULT_TOKEN_PROBABILITY = 0.4;
    
    /**
     * Map of ham tokens and their occurrences.
     *
     * String key
     * Integer value
     */
    private Map hamTokenCounts = new HashMap();
    
    /**
     * Map of spam tokens and their occurrences.
     *
     * String key
     * Integer value
     */
    private Map spamTokenCounts = new HashMap();
    
    /**
     * Number of ham messages analyzed.
     */
    private int hamMessageCount = 0;
    
    /**
     * Number of spam messages analyzed.
     */
    private int spamMessageCount = 0;
    
    /**
     * Final token/probability corpus.
     *
     * String key
     * Double value
     */
    private Map corpus = new HashMap();
    
    /**
     * Inner class for managing Token Probability Strengths during the
     * computeSpamProbability phase.
     *
     * By probability strength we mean the absolute distance of a
     * probability from the middle value 0.5.
     *
     * It implements Comparable so that it's sorting is automatic.
     */
    private class TokenProbabilityStrength
    implements Comparable {
        /**
         * Message token.
         */
        String token = null;
        
        /**
         * Token's computed probability strength.
         */
        double strength = Math.abs(0.5 - DEFAULT_TOKEN_PROBABILITY);
        
        /**
         * Force the natural sort order for this object to be high-to-low.
         *
         * @param anotherTokenProbabilityStrength A TokenProbabilityStrength instance to compare
         *                                this instance with.
         *
         * @return The result of the comparison (before, equal, after).
         */
        public final int compareTo(Object anotherTokenProbabilityStrength) {
            int result = (int) ((((TokenProbabilityStrength) anotherTokenProbabilityStrength).strength - strength) * 1000000);
            if (result == 0) {
                return this.token.compareTo(((TokenProbabilityStrength) anotherTokenProbabilityStrength).token);
            } else {
                return result;
            }
        }
        
        /**
         * Simple toString () implementation mostly for debugging purposes.
         *
         * @return String representation of this object.
         */
        public String toString() {
            StringBuffer sb = new StringBuffer(30);
            
            sb.append(token)
            .append("=")
            .append(strength);
            
            return sb.toString();
        }
    }
    
    /**
     * Basic class constructor.
     */
    public BayesianAnalyzer() {
    }
    
    /**
     * Public setter for the hamTokenCounts Map.
     *
     * @param hamTokenCounts The new ham Token counts Map.
     */
    public void setHamTokenCounts(Map hamTokenCounts) {
        this.hamTokenCounts = hamTokenCounts;
    }
    
    /**
     * Public getter for the hamTokenCounts Map.
     */
    public Map getHamTokenCounts() {
        return this.hamTokenCounts;
    }
    
    /**
     * Public setter for the spamTokenCounts Map.
     *
     * @param spamTokenCounts The new spam Token counts Map.
     */
    public void setSpamTokenCounts(Map spamTokenCounts) {
        this.spamTokenCounts = spamTokenCounts;
    }
    
    /**
     * Public getter for the spamTokenCounts Map.
     */
    public Map getSpamTokenCounts() {
        return this.spamTokenCounts;
    }
    
    /**
     * Public setter for spamMessageCount.
     *
     * @param spamMessageCount The new spam message count.
     */
    public void setSpamMessageCount(int spamMessageCount) {
        this.spamMessageCount = spamMessageCount;
    }
    
    /**
     * Public getter for spamMessageCount.
     */
    public int getSpamMessageCount() {
        return this.spamMessageCount;
    }
    
    /**
     * Public setter for hamMessageCount.
     *
     * @param hamMessageCount The new ham message count.
     */
    public void setHamMessageCount(int hamMessageCount) {
        this.hamMessageCount = hamMessageCount;
    }
    
    /**
     * Public getter for hamMessageCount.
     */
    public int getHamMessageCount() {
        return this.hamMessageCount;
    }
    
    /**
     * Clears all analysis repositories and counters.
     */
    public void clear() {
        corpus.clear();
        
        tokenCountsClear();
        
        hamMessageCount = 0;
        spamMessageCount = 0;
    }
    
    /**
     * Clears token counters.
     */
    public void tokenCountsClear() {
        hamTokenCounts.clear();
        spamTokenCounts.clear();
    }
    
    /**
     * Public setter for corpus.
     *
     * @param corpus The new corpus.
     */
    public void setCorpus(Map corpus) {
        this.corpus = corpus;
    }
    
    /**
     * Public getter for corpus.
     */
    public Map getCorpus() {
        return this.corpus;
    }
    
    /**
     * Builds the corpus from the existing ham & spam counts.
     */
    public void buildCorpus() {
        //Combine the known ham & spam tokens.
        Set set = new HashSet(hamTokenCounts.size() + spamTokenCounts.size());
        set.addAll(hamTokenCounts.keySet());
        set.addAll(spamTokenCounts.keySet());
        Map tempCorpus = new HashMap(set.size());
        
        //Iterate through all the tokens and compute their new
        //individual probabilities.
        Iterator i = set.iterator();
        while (i.hasNext()) {
            String token = (String) i.next();
            tempCorpus.put(token, new Double(computeProbability(token)));
        }
        setCorpus(tempCorpus);
    }
    
    /**
     * Adds a message to the ham list.
     * @param stream A reader stream on the ham message to analyze
     * @throws IOException If any error occurs
     */
    public void addHam(Reader stream)
    throws java.io.IOException {
        addTokenOccurrences(stream, hamTokenCounts);
        hamMessageCount++;
    }
    
    /**
     * Adds a message to the spam list.
     * @param stream A reader stream on the spam message to analyze
     * @throws IOException If any error occurs
     */
    public void addSpam(Reader stream)
    throws java.io.IOException {
        addTokenOccurrences(stream, spamTokenCounts);
        spamMessageCount++;
    }
    
    /**
     * Computes the probability that the stream contains SPAM.
     * @param stream The text to be analyzed for Spamminess.
     * @return A 0.0 - 1.0 probability
     * @throws IOException If any error occurs
     */
    public double computeSpamProbability(Reader stream)
    throws java.io.IOException {
        //Build a set of the tokens in the Stream.
        Set tokens = parse(stream);
        
        // Get the corpus to use in this run
        // A new corpus may be being built in the meantime
        Map workCorpus = getCorpus();
        
        //Assign their probabilities from the Corpus (using an additional
        //calculation to determine spamminess).
        SortedSet tokenProbabilityStrengths = getTokenProbabilityStrengths(tokens, workCorpus);
        
        //Compute and return the overall probability that the
        //stream is SPAM.
        return computeOverallProbability(tokenProbabilityStrengths, workCorpus);
    }
    
    /**
     * Parses a stream into tokens, and updates the target Map
     * with the token/counts.
     *
     * @param stream
     * @param target
     */
    private void addTokenOccurrences(Reader stream, Map target)
    throws java.io.IOException {
        String token;
        String header = "";
        
        //Update target with the tokens/count encountered.
        while ((token = nextToken(stream)) != null) {
            boolean endingLine = false;
            if (token.length() > 0 && token.charAt(token.length() - 1) == '\n') {
                endingLine = true;
                token = token.substring(0, token.length() - 1);
            }
            
            if (token.length() > 0 && header.length() + token.length() < 90 && !allDigits(token)) {
                if (token.equals("From:")
                || token.equals("Return-Path:")
                || token.equals("Subject:")
                || token.equals("To:")
                ) {
                    header = token;
                    if (!endingLine) {
                        continue;
                    }
                }
                
                token = header + token;
                
                Integer value = null;
                
                if (target.containsKey(token)) {
                    value = new Integer(((Integer) target.get(token)).intValue() + 1);
                } else {
                    value = new Integer(1);
                }
                
                target.put(token, value);
            }
            
            if (endingLine) {
                header = "";
            }
        }
    }
    
    /**
     * Parses a stream into tokens, and returns a Set of
     * the unique tokens encountered.
     *
     * @param stream
     * @return Set
     */
    private Set parse(Reader stream)
    throws java.io.IOException {
        Set tokens = new HashSet();
        String token;
        String header = "";
        
        //Build a Map of tokens encountered.
        while ((token = nextToken(stream)) != null) {
            boolean endingLine = false;
            if (token.length() > 0 && token.charAt(token.length() - 1) == '\n') {
                endingLine = true;
                token = token.substring(0, token.length() - 1);
            }
            
            if (token.length() > 0 && header.length() + token.length() < 90 && !allDigits(token)) {
                if (token.equals("From:")
                || token.equals("Return-Path:")
                || token.equals("Subject:")
                || token.equals("To:")
                ) {
                    header = token;
                    if (!endingLine) {
                        continue;
                    }
                }
                
                token = header + token;
                
                tokens.add(token);
            }
            
            if (endingLine) {
                header = "";
            }
        }
        
        //Return the unique set of tokens encountered.
        return tokens;
    }
    
    private String nextToken(Reader reader) throws java.io.IOException {
        StringBuffer token = new StringBuffer();
        int i;
        char ch, ch2;
        boolean previousWasDigit = false;
        boolean tokenCharFound = false;
        
        if (!reader.ready()) {
            return null;
        }
        
        while ((i = reader.read()) != -1) {
            
            ch = (char) i;
            
            if (ch == ':') {
                String tokenString = token.toString() + ':';
                if (tokenString.equals("From:")
                || tokenString.equals("Return-Path:")
                || tokenString.equals("Subject:")
                || tokenString.equals("To:")
                ) {
                    return tokenString;
                }
            }
            
            if (Character.isLetter(ch)
            || ch == '-'
            || ch == '$'
            || ch == '\u20AC' // the EURO symbol
            || ch == '!'
            || ch == '\''
            ) {
                tokenCharFound = true;
                previousWasDigit = false;
                token.append(ch);
            } else if (Character.isDigit(ch)) {
                tokenCharFound = true;
                previousWasDigit = true;
                token.append(ch);
            } else if (previousWasDigit && (ch == '.' || ch == ',')) {
                reader.mark(1);
                previousWasDigit = false;
                i = reader.read();
                if (i == -1) {
                    break;
                }
                ch2 = (char) i;
                if (Character.isDigit(ch2)) {
                    tokenCharFound = true;
                    previousWasDigit = true;
                    token.append(ch);
                    token.append(ch2);
                } else {
                    reader.reset();
                    break;
                }
            } else if (ch == '\r') {
                // cr found, ignore
            } else if (ch == '\n') {
                // eol found
                tokenCharFound = true;
                previousWasDigit = false;
                token.append(ch);
                break;
            } else if (tokenCharFound) {
                break;
            }
        }
        
        if (tokenCharFound) {
            //          System.out.println("Token read: " + token);
            return token.toString();
        } else {
            return null;
        }
    }
    
    /**
     * Compute the probability that "token" is SPAM.
     *
     * @param token
     * @return  The probability that the token occurs within spam.
     */
    private double computeProbability(String token) {
        double hamFactor  = 0;
        double spamFactor = 0;
        
        boolean foundInHam = false;
        boolean foundInSpam = false;
        
        double minThreshold = 0.01;
        double maxThreshold = 0.99;
        
        if (hamTokenCounts.containsKey(token)) {
            foundInHam = true;
        }
        
        if (spamTokenCounts.containsKey(token)) {
            foundInSpam = true;
        }
        
        if (foundInHam) {
            hamFactor = 2 *((Integer) hamTokenCounts.get(token)).doubleValue();
            if (!foundInSpam) {
                minThreshold = (hamFactor > 20) ? 0.0001 : 0.0002;
            }
        }
        
        if (foundInSpam) {
            spamFactor = ((Integer) spamTokenCounts.get(token)).doubleValue();
            if (!foundInHam) {
                maxThreshold = (spamFactor > 10) ? 0.9999 : 0.9998;
            }
        }
        
        if ((hamFactor + spamFactor) < 5) {
            //This token hasn't been seen enough.
            return 0.4;
        }
        
        double spamFreq = Math.min(1.0, spamFactor / spamMessageCount);
        double hamFreq = Math.min(1.0, hamFactor / hamMessageCount);
        
        return Math.max(minThreshold, Math.min(maxThreshold, (spamFreq / (hamFreq + spamFreq))));
    }
    
    /**
     * Returns a SortedSet of TokenProbabilityStrength built from the
     * Corpus and the tokens passed in the "tokens" Set.
     * The ordering is from the highest strength to the lowest strength.
     *
     * @param tokens
     * @param workCorpus
     * @return  SortedSet of TokenProbabilityStrength objects.
     */
    private SortedSet getTokenProbabilityStrengths(Set tokens, Map workCorpus) {
        //Convert to a SortedSet of token probability strengths.
        SortedSet tokenProbabilityStrengths = new TreeSet();
        
        Iterator i = tokens.iterator();
        while (i.hasNext()) {
            TokenProbabilityStrength tps = new TokenProbabilityStrength();
            
            tps.token = (String) i.next();
            
            if (workCorpus.containsKey(tps.token)) {
                tps.strength = Math.abs(0.5 - ((Double) workCorpus.get(tps.token)).doubleValue());
            }
            else {
                //This token has never been seen before,
                //we'll give it initially the default probability.
                Double corpusProbability = new Double(DEFAULT_TOKEN_PROBABILITY);
                tps.strength = Math.abs(0.5 - DEFAULT_TOKEN_PROBABILITY);
                boolean isTokenDegeneratedFound = false;
                
                Collection degeneratedTokens = buildDegenerated(tps.token);
                Iterator iDegenerated = degeneratedTokens.iterator();
                String tokenDegenerated = null;
                double strengthDegenerated;
                while (iDegenerated.hasNext()) {
                    tokenDegenerated = (String) iDegenerated.next();
                    if (workCorpus.containsKey(tokenDegenerated)) {
                        Double probabilityTemp = (Double) workCorpus.get(tokenDegenerated);
                        strengthDegenerated = Math.abs(0.5 - probabilityTemp.doubleValue());
                        if (strengthDegenerated > tps.strength) {
                            isTokenDegeneratedFound = true;
                            tps.strength = strengthDegenerated;
                            corpusProbability = probabilityTemp;
                        }
                    }
                }
                // to reduce memory usage, put in the corpus only if the probability is different from (stronger than) the default
                if (isTokenDegeneratedFound) {
                    synchronized(workCorpus) {
                        workCorpus.put(tps.token, corpusProbability);
                    }
                }
            }
            
            tokenProbabilityStrengths.add(tps);
        }
        
        return tokenProbabilityStrengths;
    }
    
    private Collection buildDegenerated(String fullToken) {
        ArrayList tokens = new ArrayList();
        String header;
        String token;
        
        // look for a header string termination
        int headerEnd = fullToken.indexOf(':');
        if (headerEnd >= 0) {
            header = fullToken.substring(0, headerEnd);
            token = fullToken.substring(headerEnd);
        } else {
            header = "";
            token = fullToken;
        }
        
        int end = token.length();
        do {
            if (!token.substring(0, end).equals(token.substring(0, end).toLowerCase())) {
                tokens.add(header + token.substring(0, end).toLowerCase());
                if (header.length() > 0) {
                    tokens.add(token.substring(0, end).toLowerCase());
                }
            }
            if (end > 1 && token.charAt(0) >= 'A' && token.charAt(0) <= 'Z') {
                tokens.add(header + token.charAt(0) + token.substring(1, end).toLowerCase());
                if (header.length() > 0) {
                    tokens.add(token.charAt(0) + token.substring(1, end).toLowerCase());
                }
            }
            
            if (token.charAt(end - 1) != '!') {
                break;
            }
            
            end--;
            
            tokens.add(header + token.substring(0, end));
            if (header.length() > 0) {
                tokens.add(token.substring(0, end));
            }
        } while (end > 0);
        
        return tokens;
    }
    
    /**
     * Compute the spamminess probability of the interesting tokens in
     * the tokenProbabilities SortedSet.
     *
     * @param tokenProbabilities
     * @param workCorpus
     * @return  Computed spamminess.
     */
    private double computeOverallProbability(SortedSet tokenProbabilityStrengths, Map workCorpus) {
        double p = 1.0;
        double np = 1.0;
        double tempStrength = 0.5;
        int count = MAX_INTERESTING_TOKENS;
        Iterator iterator = tokenProbabilityStrengths.iterator();
        while ((iterator.hasNext()) && (count-- > 0 || tempStrength >= INTERESTINGNESS_THRESHOLD)) {
            TokenProbabilityStrength tps = (TokenProbabilityStrength) iterator.next();
            tempStrength = tps.strength;
            
            //      System.out.println(tps);
            
            double theDoubleValue = DEFAULT_TOKEN_PROBABILITY; // initialize it to the default
            Double theDoubleObject = (Double) workCorpus.get(tps.token);
            // if either the original token or a degeneration was found use the double value, otherwise use the default
            if (theDoubleObject != null) {
                theDoubleValue = theDoubleObject.doubleValue();
            }
            p *= theDoubleValue;
            np *= (1.0 - theDoubleValue);
            // System.out.println("Token:" + tps.token + ", p=" + theDoubleValue + ", overall p=" + p / (p + np));
        }
        
        return (p / (p + np));
    }
    
    private boolean allSameChar(String s) {
        if (s.length() < 2) {
            return false;
        }
        
        char c = s.charAt(0);
        
        for (int i = 1; i < s.length(); i++) {
            if (s.charAt(i) != c) {
                return false;
            }
        }
        return true;
    }
    
    private boolean allDigits(String s) {
        for (int i = 0; i < s.length(); i++) {
            if (!Character.isDigit(s.charAt(i))) {
                return false;
            }
        }
        return true;
    }
}