/*
* Copyright (C) The Apache Software Foundation. All rights reserved.
*
* This software is published under the terms of the Apache Software License
* version 1.1, a copy of which has been included with this distribution in
* the LICENSE.txt file.
*/
import java.io.IOException;
import java.io.OutputStream;
/**
* An output stream that compresses into the BZip2 format (without the file
* header chars) into another stream. TODO: Update to BZip2 1.0.1
*
* @author Keiron Liddle
*/
public class CBZip2OutputStream
extends OutputStream
implements BZip2Constants
{
private static final int LOWER_BYTE_MASK = 0x000000ff;
private static final int UPPER_BYTE_MASK = 0xffffff00;
private static final int SETMASK = ( 1 << 21 );
private static final int CLEARMASK = ( ~SETMASK );
private static final int GREATER_ICOST = 15;
private static final int LESSER_ICOST = 0;
private static final int SMALL_THRESH = 20;
private static final int DEPTH_THRESH = 10;
/*
* If you are ever unlucky/improbable enough
* to get a stack overflow whilst sorting,
* increase the following constant and try
* again. In practice I have never seen the
* stack go above 27 elems, so the following
* limit seems very generous.
*/
private static final int QSORT_STACK_SIZE = 1000;
private CRC m_crc = new CRC();
private boolean[] m_inUse = new boolean[ 256 ];
private char[] m_seqToUnseq = new char[ 256 ];
private char[] m_unseqToSeq = new char[ 256 ];
private char[] m_selector = new char[ MAX_SELECTORS ];
private char[] m_selectorMtf = new char[ MAX_SELECTORS ];
private int[] m_mtfFreq = new int[ MAX_ALPHA_SIZE ];
private int m_currentChar = -1;
private int m_runLength;
private boolean m_closed;
/*
* Knuth's increments seem to work better
* than Incerpi-Sedgewick here. Possibly
* because the number of elems to sort is
* usually small, typically <= 20.
*/
private int[] m_incs = new int[]
{
1, 4, 13, 40, 121, 364, 1093, 3280,
9841, 29524, 88573, 265720,
797161, 2391484
};
private boolean m_blockRandomised;
/*
* always: in the range 0 .. 9.
* The current block size is 100000 * this number.
*/
private int m_blockSize100k;
private int m_bsBuff;
private int m_bsLive;
/*
* index of the last char in the block, so
* the block size == last + 1.
*/
private int m_last;
/*
* index in zptr[] of original string after sorting.
*/
private int m_origPtr;
private int m_allowableBlockSize;
private char[] m_block;
private int m_blockCRC;
private int m_combinedCRC;
private OutputStream m_bsStream;
private boolean m_firstAttempt;
private int[] m_ftab;
private int m_nInUse;
private int m_nMTF;
private int[] m_quadrant;
private short[] m_szptr;
private int m_workDone;
/*
* Used when sorting. If too many long comparisons
* happen, we stop sorting, randomise the block
* slightly, and try again.
*/
private int m_workFactor;
private int m_workLimit;
private int[] m_zptr;
public CBZip2OutputStream( final OutputStream output )
throws IOException
{
this( output, 9 );
}
public CBZip2OutputStream( final OutputStream output, final int blockSize )
throws IOException
{
bsSetStream( output );
m_workFactor = 50;
int outBlockSize = blockSize;
if( outBlockSize > 9 )
{
outBlockSize = 9;
}
if( outBlockSize < 1 )
{
outBlockSize = 1;
}
m_blockSize100k = outBlockSize;
allocateCompressStructures();
initialize();
initBlock();
}
private static void hbMakeCodeLengths( char[] len, int[] freq,
int alphaSize, int maxLen )
{
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int nNodes;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int nHeap;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int n1;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int n2;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int i;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int j;
/*
* Nodes and heap entries run from 1. Entry 0
* for both the heap and nodes is a sentinel.
*/
int k;
boolean tooLong;
int[] heap = new int[ MAX_ALPHA_SIZE + 2 ];
int[] weights = new int[ MAX_ALPHA_SIZE * 2 ];
int[] parent = new int[ MAX_ALPHA_SIZE * 2 ];
for( i = 0; i < alphaSize; i++ )
{
weights[ i + 1 ] = ( freq[ i ] == 0 ? 1 : freq[ i ] ) << 8;
}
while( true )
{
nNodes = alphaSize;
nHeap = 0;
heap[ 0 ] = 0;
weights[ 0 ] = 0;
parent[ 0 ] = -2;
for( i = 1; i <= alphaSize; i++ )
{
parent[ i ] = -1;
nHeap++;
heap[ nHeap ] = i;
{
int zz;
int tmp;
zz = nHeap;
tmp = heap[ zz ];
while( weights[ tmp ] < weights[ heap[ zz >> 1 ] ] )
{
heap[ zz ] = heap[ zz >> 1 ];
zz >>= 1;
}
heap[ zz ] = tmp;
}
}
if( !( nHeap < ( MAX_ALPHA_SIZE + 2 ) ) )
{
panic();
}
while( nHeap > 1 )
{
n1 = heap[ 1 ];
heap[ 1 ] = heap[ nHeap ];
nHeap--;
{
int zz = 0;
int yy = 0;
int tmp = 0;
zz = 1;
tmp = heap[ zz ];
while( true )
{
yy = zz << 1;
if( yy > nHeap )
{
break;
}
if( yy < nHeap &&
weights[ heap[ yy + 1 ] ] < weights[ heap[ yy ] ] )
{
yy++;
}
if( weights[ tmp ] < weights[ heap[ yy ] ] )
{
break;
}
heap[ zz ] = heap[ yy ];
zz = yy;
}
heap[ zz ] = tmp;
}
n2 = heap[ 1 ];
heap[ 1 ] = heap[ nHeap ];
nHeap--;
{
int zz = 0;
int yy = 0;
int tmp = 0;
zz = 1;
tmp = heap[ zz ];
while( true )
{
yy = zz << 1;
if( yy > nHeap )
{
break;
}
if( yy < nHeap &&
weights[ heap[ yy + 1 ] ] < weights[ heap[ yy ] ] )
{
yy++;
}
if( weights[ tmp ] < weights[ heap[ yy ] ] )
{
break;
}
heap[ zz ] = heap[ yy ];
zz = yy;
}
heap[ zz ] = tmp;
}
nNodes++;
parent[ n1 ] = nNodes;
parent[ n2 ] = nNodes;
final int v1 = weights[ n1 ];
final int v2 = weights[ n2 ];
final int weight = calculateWeight( v1, v2 );
weights[ nNodes ] = weight;
parent[ nNodes ] = -1;
nHeap++;
heap[ nHeap ] = nNodes;
{
int zz = 0;
int tmp = 0;
zz = nHeap;
tmp = heap[ zz ];
while( weights[ tmp ] < weights[ heap[ zz >> 1 ] ] )
{
heap[ zz ] = heap[ zz >> 1 ];
zz >>= 1;
}
heap[ zz ] = tmp;
}
}
if( !( nNodes < ( MAX_ALPHA_SIZE * 2 ) ) )
{
panic();
}
tooLong = false;
for( i = 1; i <= alphaSize; i++ )
{
j = 0;
k = i;
while( parent[ k ] >= 0 )
{
k = parent[ k ];
j++;
}
len[ i - 1 ] = (char)j;
if( j > maxLen )
{
tooLong = true;
}
}
if( !tooLong )
{
break;
}
for( i = 1; i < alphaSize; i++ )
{
j = weights[ i ] >> 8;
j = 1 + ( j / 2 );
weights[ i ] = j << 8;
}
}
}
private static int calculateWeight( final int v1, final int v2 )
{
final int upper = ( v1 & UPPER_BYTE_MASK ) + ( v2 & UPPER_BYTE_MASK );
final int v1Lower = ( v1 & LOWER_BYTE_MASK );
final int v2Lower = ( v2 & LOWER_BYTE_MASK );
final int nnnn = ( v1Lower > v2Lower ) ? v1Lower : v2Lower;
return upper | ( 1 + nnnn );
}
private static void panic()
{
System.out.println( "panic" );
//throw new CError();
}
public void close()
throws IOException
{
if( m_closed )
{
return;
}
if( m_runLength > 0 )
{
writeRun();
}
m_currentChar = -1;
endBlock();
endCompression();
m_closed = true;
super.close();
m_bsStream.close();
}
public void finalize()
throws Throwable
{
close();
}
public void flush()
throws IOException
{
super.flush();
m_bsStream.flush();
}
/**
* modified by Oliver Merkel, 010128
*
* @param bv Description of Parameter
* @exception java.io.IOException Description of Exception
*/
public void write( int bv )
throws IOException
{
int b = ( 256 + bv ) % 256;
if( m_currentChar != -1 )
{
if( m_currentChar == b )
{
m_runLength++;
if( m_runLength > 254 )
{
writeRun();
m_currentChar = -1;
m_runLength = 0;
}
}
else
{
writeRun();
m_runLength = 1;
m_currentChar = b;
}
}
else
{
m_currentChar = b;
m_runLength++;
}
}
private void allocateCompressStructures()
{
int n = BASE_BLOCK_SIZE * m_blockSize100k;
m_block = new char[ ( n + 1 + NUM_OVERSHOOT_BYTES ) ];
m_quadrant = new int[ ( n + NUM_OVERSHOOT_BYTES ) ];
m_zptr = new int[ n ];
m_ftab = new int[ 65537 ];
if( m_block == null || m_quadrant == null || m_zptr == null
|| m_ftab == null )
{
//int totalDraw = (n + 1 + NUM_OVERSHOOT_BYTES) + (n + NUM_OVERSHOOT_BYTES) + n + 65537;
//compressOutOfMemory ( totalDraw, n );
}
/*
* The back end needs a place to store the MTF values
* whilst it calculates the coding tables. We could
* put them in the zptr array. However, these values
* will fit in a short, so we overlay szptr at the
* start of zptr, in the hope of reducing the number
* of cache misses induced by the multiple traversals
* of the MTF values when calculating coding tables.
* Seems to improve compression speed by about 1%.
*/
// szptr = zptr;
m_szptr = new short[ 2 * n ];
}
private void bsFinishedWithStream()
throws IOException
{
while( m_bsLive > 0 )
{
int ch = ( m_bsBuff >> 24 );
try
{
m_bsStream.write( ch );// write 8-bit
}
catch( IOException e )
{
throw e;
}
m_bsBuff <<= 8;
m_bsLive -= 8;
}
}
private void bsPutIntVS( int numBits, int c )
throws IOException
{
bsW( numBits, c );
}
private void bsPutUChar( int c )
throws IOException
{
bsW( 8, c );
}
private void bsPutint( int u )
throws IOException
{
bsW( 8, ( u >> 24 ) & 0xff );
bsW( 8, ( u >> 16 ) & 0xff );
bsW( 8, ( u >> 8 ) & 0xff );
bsW( 8, u & 0xff );
}
private void bsSetStream( OutputStream f )
{
m_bsStream = f;
m_bsLive = 0;
m_bsBuff = 0;
}
private void bsW( int n, int v )
throws IOException
{
while( m_bsLive >= 8 )
{
int ch = ( m_bsBuff >> 24 );
try
{
m_bsStream.write( ch );// write 8-bit
}
catch( IOException e )
{
throw e;
}
m_bsBuff <<= 8;
m_bsLive -= 8;
}
m_bsBuff |= ( v << ( 32 - m_bsLive - n ) );
m_bsLive += n;
}
private void doReversibleTransformation()
{
int i;
m_workLimit = m_workFactor * m_last;
m_workDone = 0;
m_blockRandomised = false;
m_firstAttempt = true;
mainSort();
if( m_workDone > m_workLimit && m_firstAttempt )
{
randomiseBlock();
m_workLimit = 0;
m_workDone = 0;
m_blockRandomised = true;
m_firstAttempt = false;
mainSort();
}
m_origPtr = -1;
for( i = 0; i <= m_last; i++ )
{
if( m_zptr[ i ] == 0 )
{
m_origPtr = i;
break;
}
}
;
if( m_origPtr == -1 )
{
panic();
}
}
private void endBlock()
throws IOException
{
m_blockCRC = m_crc.getFinalCRC();
m_combinedCRC = ( m_combinedCRC << 1 ) | ( m_combinedCRC >>> 31 );
m_combinedCRC ^= m_blockCRC;
/*
* sort the block and establish posn of original string
*/
doReversibleTransformation();
/*
* A 6-byte block header, the value chosen arbitrarily
* as 0x314159265359 :-). A 32 bit value does not really
* give a strong enough guarantee that the value will not
* appear by chance in the compressed datastream. Worst-case
* probability of this event, for a 900k block, is about
* 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits.
* For a compressed file of size 100Gb -- about 100000 blocks --
* only a 48-bit marker will do. NB: normal compression/
* decompression do *not* rely on these statistical properties.
* They are only important when trying to recover blocks from
* damaged files.
*/
bsPutUChar( 0x31 );
bsPutUChar( 0x41 );
bsPutUChar( 0x59 );
bsPutUChar( 0x26 );
bsPutUChar( 0x53 );
bsPutUChar( 0x59 );
/*
* Now the block's CRC, so it is in a known place.
*/
bsPutint( m_blockCRC );
/*
* Now a single bit indicating randomisation.
*/
if( m_blockRandomised )
{
bsW( 1, 1 );
}
else
{
bsW( 1, 0 );
}
/*
* Finally, block's contents proper.
*/
moveToFrontCodeAndSend();
}
private void endCompression()
throws IOException
{
/*
* Now another magic 48-bit number, 0x177245385090, to
* indicate the end of the last block. (sqrt(pi), if
* you want to know. I did want to use e, but it contains
* too much repetition -- 27 18 28 18 28 46 -- for me
* to feel statistically comfortable. Call me paranoid.)
*/
bsPutUChar( 0x17 );
bsPutUChar( 0x72 );
bsPutUChar( 0x45 );
bsPutUChar( 0x38 );
bsPutUChar( 0x50 );
bsPutUChar( 0x90 );
bsPutint( m_combinedCRC );
bsFinishedWithStream();
}
private boolean fullGtU( int i1, int i2 )
{
int k;
char c1;
char c2;
int s1;
int s2;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
i1++;
i2++;
k = m_last + 1;
do
{
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
s1 = m_quadrant[ i1 ];
s2 = m_quadrant[ i2 ];
if( s1 != s2 )
{
return ( s1 > s2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
s1 = m_quadrant[ i1 ];
s2 = m_quadrant[ i2 ];
if( s1 != s2 )
{
return ( s1 > s2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
s1 = m_quadrant[ i1 ];
s2 = m_quadrant[ i2 ];
if( s1 != s2 )
{
return ( s1 > s2 );
}
i1++;
i2++;
c1 = m_block[ i1 + 1 ];
c2 = m_block[ i2 + 1 ];
if( c1 != c2 )
{
return ( c1 > c2 );
}
s1 = m_quadrant[ i1 ];
s2 = m_quadrant[ i2 ];
if( s1 != s2 )
{
return ( s1 > s2 );
}
i1++;
i2++;
if( i1 > m_last )
{
i1 -= m_last;
i1--;
}
;
if( i2 > m_last )
{
i2 -= m_last;
i2--;
}
;
k -= 4;
m_workDone++;
} while( k >= 0 );
return false;
}
private void generateMTFValues()
{
char[] yy = new char[ 256 ];
int i;
int j;
char tmp;
char tmp2;
int zPend;
int wr;
int EOB;
makeMaps();
EOB = m_nInUse + 1;
for( i = 0; i <= EOB; i++ )
{
m_mtfFreq[ i ] = 0;
}
wr = 0;
zPend = 0;
for( i = 0; i < m_nInUse; i++ )
{
yy[ i ] = (char)i;
}
for( i = 0; i <= m_last; i++ )
{
char ll_i;
ll_i = m_unseqToSeq[ m_block[ m_zptr[ i ] ] ];
j = 0;
tmp = yy[ j ];
while( ll_i != tmp )
{
j++;
tmp2 = tmp;
tmp = yy[ j ];
yy[ j ] = tmp2;
}
;
yy[ 0 ] = tmp;
if( j == 0 )
{
zPend++;
}
else
{
if( zPend > 0 )
{
zPend--;
while( true )
{
switch( zPend % 2 )
{
case 0:
m_szptr[ wr ] = (short)RUNA;
wr++;
m_mtfFreq[ RUNA ]++;
break;
case 1:
m_szptr[ wr ] = (short)RUNB;
wr++;
m_mtfFreq[ RUNB ]++;
break;
}
;
if( zPend < 2 )
{
break;
}
zPend = ( zPend - 2 ) / 2;
}
;
zPend = 0;
}
m_szptr[ wr ] = (short)( j + 1 );
wr++;
m_mtfFreq[ j + 1 ]++;
}
}
if( zPend > 0 )
{
zPend--;
while( true )
{
switch( zPend % 2 )
{
case 0:
m_szptr[ wr ] = (short)RUNA;
wr++;
m_mtfFreq[ RUNA ]++;
break;
case 1:
m_szptr[ wr ] = (short)RUNB;
wr++;
m_mtfFreq[ RUNB ]++;
break;
}
if( zPend < 2 )
{
break;
}
zPend = ( zPend - 2 ) / 2;
}
}
m_szptr[ wr ] = (short)EOB;
wr++;
m_mtfFreq[ EOB ]++;
m_nMTF = wr;
}
private void hbAssignCodes( int[] code, char[] length, int minLen,
int maxLen, int alphaSize )
{
int n;
int vec;
int i;
vec = 0;
for( n = minLen; n <= maxLen; n++ )
{
for( i = 0; i < alphaSize; i++ )
{
if( length[ i ] == n )
{
code[ i ] = vec;
vec++;
}
}
;
vec <<= 1;
}
}
private void initBlock()
{
// blockNo++;
m_crc.initialiseCRC();
m_last = -1;
// ch = 0;
for( int i = 0; i < 256; i++ )
{
m_inUse[ i ] = false;
}
/*
* 20 is just a paranoia constant
*/
m_allowableBlockSize = BASE_BLOCK_SIZE * m_blockSize100k - 20;
}
private void initialize()
throws IOException
{
/*
* Write `magic' bytes h indicating file-format == huffmanised,
* followed by a digit indicating blockSize100k.
*/
bsPutUChar( 'h' );
bsPutUChar( '0' + m_blockSize100k );
m_combinedCRC = 0;
}
private void mainSort()
{
int i;
int j;
int ss;
int sb;
int[] runningOrder = new int[ 256 ];
int[] copy = new int[ 256 ];
boolean[] bigDone = new boolean[ 256 ];
int c1;
int c2;
/*
* In the various block-sized structures, live data runs
* from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First,
* set up the overshoot area for block.
*/
// if (verbosity >= 4) fprintf ( stderr, " sort initialise ...\n" );
for( i = 0; i < NUM_OVERSHOOT_BYTES; i++ )
{
m_block[ m_last + i + 2 ] = m_block[ ( i % ( m_last + 1 ) ) + 1 ];
}
for( i = 0; i <= m_last + NUM_OVERSHOOT_BYTES; i++ )
{
m_quadrant[ i ] = 0;
}
m_block[ 0 ] = m_block[ m_last + 1 ];
if( m_last < 4000 )
{
/*
* Use simpleSort(), since the full sorting mechanism
* has quite a large constant overhead.
*/
for( i = 0; i <= m_last; i++ )
{
m_zptr[ i ] = i;
}
m_firstAttempt = false;
m_workDone = 0;
m_workLimit = 0;
simpleSort( 0, m_last, 0 );
}
else
{
for( i = 0; i <= 255; i++ )
{
bigDone[ i ] = false;
}
for( i = 0; i <= 65536; i++ )
{
m_ftab[ i ] = 0;
}
c1 = m_block[ 0 ];
for( i = 0; i <= m_last; i++ )
{
c2 = m_block[ i + 1 ];
m_ftab[ ( c1 << 8 ) + c2 ]++;
c1 = c2;
}
for( i = 1; i <= 65536; i++ )
{
m_ftab[ i ] += m_ftab[ i - 1 ];
}
c1 = m_block[ 1 ];
for( i = 0; i < m_last; i++ )
{
c2 = m_block[ i + 2 ];
j = ( c1 << 8 ) + c2;
c1 = c2;
m_ftab[ j ]--;
m_zptr[ m_ftab[ j ] ] = i;
}
j = ( ( m_block[ m_last + 1 ] ) << 8 ) + ( m_block[ 1 ] );
m_ftab[ j ]--;
m_zptr[ m_ftab[ j ] ] = m_last;
/*
* Now ftab contains the first loc of every small bucket.
* Calculate the running order, from smallest to largest
* big bucket.
*/
for( i = 0; i <= 255; i++ )
{
runningOrder[ i ] = i;
}
{
int vv;
int h = 1;
do
{
h = 3 * h + 1;
} while( h <= 256 );
do
{
h = h / 3;
for( i = h; i <= 255; i++ )
{
vv = runningOrder[ i ];
j = i;
while( ( m_ftab[ ( ( runningOrder[ j - h ] ) + 1 ) << 8 ]
- m_ftab[ ( runningOrder[ j - h ] ) << 8 ] ) >
( m_ftab[ ( ( vv ) + 1 ) << 8 ] - m_ftab[ ( vv ) << 8 ] ) )
{
runningOrder[ j ] = runningOrder[ j - h ];
j = j - h;
if( j <= ( h - 1 ) )
{
break;
}
}
runningOrder[ j ] = vv;
}
} while( h != 1 );
}
/*
* The main sorting loop.
*/
for( i = 0; i <= 255; i++ )
{
/*
* Process big buckets, starting with the least full.
*/
ss = runningOrder[ i ];
/*
* Complete the big bucket [ss] by quicksorting
* any unsorted small buckets [ss, j]. Hopefully
* previous pointer-scanning phases have already
* completed many of the small buckets [ss, j], so
* we don't have to sort them at all.
*/
for( j = 0; j <= 255; j++ )
{
sb = ( ss << 8 ) + j;
if( !( ( m_ftab[ sb ] & SETMASK ) == SETMASK ) )
{
int lo = m_ftab[ sb ] & CLEARMASK;
int hi = ( m_ftab[ sb + 1 ] & CLEARMASK ) - 1;
if( hi > lo )
{
qSort3( lo, hi, 2 );
if( m_workDone > m_workLimit && m_firstAttempt )
{
return;
}
}
m_ftab[ sb ] |= SETMASK;
}
}
/*
* The ss big bucket is now done. Record this fact,
* and update the quadrant descriptors. Remember to
* update quadrants in the overshoot area too, if
* necessary. The "if (i < 255)" test merely skips
* this updating for the last bucket processed, since
* updating for the last bucket is pointless.
*/
bigDone[ ss ] = true;
if( i < 255 )
{
int bbStart = m_ftab[ ss << 8 ] & CLEARMASK;
int bbSize = ( m_ftab[ ( ss + 1 ) << 8 ] & CLEARMASK ) - bbStart;
int shifts = 0;
while( ( bbSize >> shifts ) > 65534 )
{
shifts++;
}
for( j = 0; j < bbSize; j++ )
{
int a2update = m_zptr[ bbStart + j ];
int qVal = ( j >> shifts );
m_quadrant[ a2update ] = qVal;
if( a2update < NUM_OVERSHOOT_BYTES )
{
m_quadrant[ a2update + m_last + 1 ] = qVal;
}
}
if( !( ( ( bbSize - 1 ) >> shifts ) <= 65535 ) )
{
panic();
}
}
/*
* Now scan this big bucket so as to synthesise the
* sorted order for small buckets [t, ss] for all t != ss.
*/
for( j = 0; j <= 255; j++ )
{
copy[ j ] = m_ftab[ ( j << 8 ) + ss ] & CLEARMASK;
}
for( j = m_ftab[ ss << 8 ] & CLEARMASK;
j < ( m_ftab[ ( ss + 1 ) << 8 ] & CLEARMASK ); j++ )
{
c1 = m_block[ m_zptr[ j ] ];
if( !bigDone[ c1 ] )
{
m_zptr[ copy[ c1 ] ] = m_zptr[ j ] == 0 ? m_last : m_zptr[ j ] - 1;
copy[ c1 ]++;
}
}
for( j = 0; j <= 255; j++ )
{
m_ftab[ ( j << 8 ) + ss ] |= SETMASK;
}
}
}
}
private void makeMaps()
{
int i;
m_nInUse = 0;
for( i = 0; i < 256; i++ )
{
if( m_inUse[ i ] )
{
m_seqToUnseq[ m_nInUse ] = (char)i;
m_unseqToSeq[ i ] = (char)m_nInUse;
m_nInUse++;
}
}
}
private char med3( char a, char b, char c )
{
char t;
if( a > b )
{
t = a;
a = b;
b = t;
}
if( b > c )
{
t = b;
b = c;
c = t;
}
if( a > b )
{
b = a;
}
return b;
}
private void moveToFrontCodeAndSend()
throws IOException
{
bsPutIntVS( 24, m_origPtr );
generateMTFValues();
sendMTFValues();
}
private void qSort3( int loSt, int hiSt, int dSt )
{
int unLo;
int unHi;
int ltLo;
int gtHi;
int med;
int n;
int m;
int sp;
int lo;
int hi;
int d;
StackElem[] stack = new StackElem[ QSORT_STACK_SIZE ];
for( int count = 0; count < QSORT_STACK_SIZE; count++ )
{
stack[ count ] = new StackElem();
}
sp = 0;
stack[ sp ].m_ll = loSt;
stack[ sp ].m_hh = hiSt;
stack[ sp ].m_dd = dSt;
sp++;
while( sp > 0 )
{
if( sp >= QSORT_STACK_SIZE )
{
panic();
}
sp--;
lo = stack[ sp ].m_ll;
hi = stack[ sp ].m_hh;
d = stack[ sp ].m_dd;
if( hi - lo < SMALL_THRESH || d > DEPTH_THRESH )
{
simpleSort( lo, hi, d );
if( m_workDone > m_workLimit && m_firstAttempt )
{
return;
}
continue;
}
med = med3( m_block[ m_zptr[ lo ] + d + 1 ],
m_block[ m_zptr[ hi ] + d + 1 ],
m_block[ m_zptr[ ( lo + hi ) >> 1 ] + d + 1 ] );
unLo = lo;
ltLo = lo;
unHi = hi;
gtHi = hi;
while( true )
{
while( true )
{
if( unLo > unHi )
{
break;
}
n = m_block[ m_zptr[ unLo ] + d + 1 ] - med;
if( n == 0 )
{
int temp = 0;
temp = m_zptr[ unLo ];
m_zptr[ unLo ] = m_zptr[ ltLo ];
m_zptr[ ltLo ] = temp;
ltLo++;
unLo++;
continue;
}
;
if( n > 0 )
{
break;
}
unLo++;
}
while( true )
{
if( unLo > unHi )
{
break;
}
n = m_block[ m_zptr[ unHi ] + d + 1 ] - med;
if( n == 0 )
{
int temp = 0;
temp = m_zptr[ unHi ];
m_zptr[ unHi ] = m_zptr[ gtHi ];
m_zptr[ gtHi ] = temp;
gtHi--;
unHi--;
continue;
}
;
if( n < 0 )
{
break;
}
unHi--;
}
if( unLo > unHi )
{
break;
}
int temp = 0;
temp = m_zptr[ unLo ];
m_zptr[ unLo ] = m_zptr[ unHi ];
m_zptr[ unHi ] = temp;
unLo++;
unHi--;
}
if( gtHi < ltLo )
{
stack[ sp ].m_ll = lo;
stack[ sp ].m_hh = hi;
stack[ sp ].m_dd = d + 1;
sp++;
continue;
}
n = ( ( ltLo - lo ) < ( unLo - ltLo ) ) ? ( ltLo - lo ) : ( unLo - ltLo );
vswap( lo, unLo - n, n );
m = ( ( hi - gtHi ) < ( gtHi - unHi ) ) ? ( hi - gtHi ) : ( gtHi - unHi );
vswap( unLo, hi - m + 1, m );
n = lo + unLo - ltLo - 1;
m = hi - ( gtHi - unHi ) + 1;
stack[ sp ].m_ll = lo;
stack[ sp ].m_hh = n;
stack[ sp ].m_dd = d;
sp++;
stack[ sp ].m_ll = n + 1;
stack[ sp ].m_hh = m - 1;
stack[ sp ].m_dd = d + 1;
sp++;
stack[ sp ].m_ll = m;
stack[ sp ].m_hh = hi;
stack[ sp ].m_dd = d;
sp++;
}
}
private void randomiseBlock()
{
int i;
int rNToGo = 0;
int rTPos = 0;
for( i = 0; i < 256; i++ )
{
m_inUse[ i ] = false;
}
for( i = 0; i <= m_last; i++ )
{
if( rNToGo == 0 )
{
rNToGo = (char)RAND_NUMS[ rTPos ];
rTPos++;
if( rTPos == 512 )
{
rTPos = 0;
}
}
rNToGo--;
m_block[ i + 1 ] ^= ( ( rNToGo == 1 ) ? 1 : 0 );
// handle 16 bit signed numbers
m_block[ i + 1 ] &= 0xFF;
m_inUse[ m_block[ i + 1 ] ] = true;
}
}
private void sendMTFValues()
throws IOException
{
char[][] len = new char[ N_GROUPS ][ MAX_ALPHA_SIZE ];
int v;
int t;
int i;
int j;
int gs;
int ge;
int bt;
int bc;
int iter;
int nSelectors = 0;
int alphaSize;
int minLen;
int maxLen;
int selCtr;
int nGroups;
alphaSize = m_nInUse + 2;
for( t = 0; t < N_GROUPS; t++ )
{
for( v = 0; v < alphaSize; v++ )
{
len[ t ][ v ] = (char)GREATER_ICOST;
}
}
/*
* Decide how many coding tables to use
*/
if( m_nMTF <= 0 )
{
panic();
}
if( m_nMTF < 200 )
{
nGroups = 2;
}
else if( m_nMTF < 600 )
{
nGroups = 3;
}
else if( m_nMTF < 1200 )
{
nGroups = 4;
}
else if( m_nMTF < 2400 )
{
nGroups = 5;
}
else
{
nGroups = 6;
}
{
/*
* Generate an initial set of coding tables
*/
int nPart;
int remF;
int tFreq;
int aFreq;
nPart = nGroups;
remF = m_nMTF;
gs = 0;
while( nPart > 0 )
{
tFreq = remF / nPart;
ge = gs - 1;
aFreq = 0;
while( aFreq < tFreq && ge < alphaSize - 1 )
{
ge++;
aFreq += m_mtfFreq[ ge ];
}
if( ge > gs && nPart != nGroups && nPart != 1
&& ( ( nGroups - nPart ) % 2 == 1 ) )
{
aFreq -= m_mtfFreq[ ge ];
ge--;
}
for( v = 0; v < alphaSize; v++ )
{
if( v >= gs && v <= ge )
{
len[ nPart - 1 ][ v ] = (char)LESSER_ICOST;
}
else
{
len[ nPart - 1 ][ v ] = (char)GREATER_ICOST;
}
}
nPart--;
gs = ge + 1;
remF -= aFreq;
}
}
int[][] rfreq = new int[ N_GROUPS ][ MAX_ALPHA_SIZE ];
int[] fave = new int[ N_GROUPS ];
short[] cost = new short[ N_GROUPS ];
/*
* Iterate up to N_ITERS times to improve the tables.
*/
for( iter = 0; iter < N_ITERS; iter++ )
{
for( t = 0; t < nGroups; t++ )
{
fave[ t ] = 0;
}
for( t = 0; t < nGroups; t++ )
{
for( v = 0; v < alphaSize; v++ )
{
rfreq[ t ][ v ] = 0;
}
}
nSelectors = 0;
gs = 0;
while( true )
{
/*
* Set group start & end marks.
*/
if( gs >= m_nMTF )
{
break;
}
ge = gs + G_SIZE - 1;
if( ge >= m_nMTF )
{
ge = m_nMTF - 1;
}
/*
* Calculate the cost of this group as coded
* by each of the coding tables.
*/
for( t = 0; t < nGroups; t++ )
{
cost[ t ] = 0;
}
if( nGroups == 6 )
{
short cost0 = 0;
short cost1 = 0;
short cost2 = 0;
short cost3 = 0;
short cost4 = 0;
short cost5 = 0;
for( i = gs; i <= ge; i++ )
{
short icv = m_szptr[ i ];
cost0 += len[ 0 ][ icv ];
cost1 += len[ 1 ][ icv ];
cost2 += len[ 2 ][ icv ];
cost3 += len[ 3 ][ icv ];
cost4 += len[ 4 ][ icv ];
cost5 += len[ 5 ][ icv ];
}
cost[ 0 ] = cost0;
cost[ 1 ] = cost1;
cost[ 2 ] = cost2;
cost[ 3 ] = cost3;
cost[ 4 ] = cost4;
cost[ 5 ] = cost5;
}
else
{
for( i = gs; i <= ge; i++ )
{
short icv = m_szptr[ i ];
for( t = 0; t < nGroups; t++ )
{
cost[ t ] += len[ t ][ icv ];
}
}
}
/*
* Find the coding table which is best for this group,
* and record its identity in the selector table.
*/
bc = 999999999;
bt = -1;
for( t = 0; t < nGroups; t++ )
{
if( cost[ t ] < bc )
{
bc = cost[ t ];
bt = t;
}
}
;
fave[ bt ]++;
m_selector[ nSelectors ] = (char)bt;
nSelectors++;
/*
* Increment the symbol frequencies for the selected table.
*/
for( i = gs; i <= ge; i++ )
{
rfreq[ bt ][ m_szptr[ i ] ]++;
}
gs = ge + 1;
}
/*
* Recompute the tables based on the accumulated frequencies.
*/
for( t = 0; t < nGroups; t++ )
{
hbMakeCodeLengths( len[ t ], rfreq[ t ], alphaSize, 20 );
}
}
rfreq = null;
fave = null;
cost = null;
if( !( nGroups < 8 ) )
{
panic();
}
if( !( nSelectors < 32768 && nSelectors <= ( 2 + ( 900000 / G_SIZE ) ) ) )
{
panic();
}
{
/*
* Compute MTF values for the selectors.
*/
char[] pos = new char[ N_GROUPS ];
char ll_i;
char tmp2;
char tmp;
for( i = 0; i < nGroups; i++ )
{
pos[ i ] = (char)i;
}
for( i = 0; i < nSelectors; i++ )
{
ll_i = m_selector[ i ];
j = 0;
tmp = pos[ j ];
while( ll_i != tmp )
{
j++;
tmp2 = tmp;
tmp = pos[ j ];
pos[ j ] = tmp2;
}
pos[ 0 ] = tmp;
m_selectorMtf[ i ] = (char)j;
}
}
int[][] code = new int[ N_GROUPS ][ MAX_ALPHA_SIZE ];
/*
* Assign actual codes for the tables.
*/
for( t = 0; t < nGroups; t++ )
{
minLen = 32;
maxLen = 0;
for( i = 0; i < alphaSize; i++ )
{
if( len[ t ][ i ] > maxLen )
{
maxLen = len[ t ][ i ];
}
if( len[ t ][ i ] < minLen )
{
minLen = len[ t ][ i ];
}
}
if( maxLen > 20 )
{
panic();
}
if( minLen < 1 )
{
panic();
}
hbAssignCodes( code[ t ], len[ t ], minLen, maxLen, alphaSize );
}
{
/*
* Transmit the mapping table.
*/
boolean[] inUse16 = new boolean[ 16 ];
for( i = 0; i < 16; i++ )
{
inUse16[ i ] = false;
for( j = 0; j < 16; j++ )
{
if( m_inUse[ i * 16 + j ] )
{
inUse16[ i ] = true;
}
}
}
for( i = 0; i < 16; i++ )
{
if( inUse16[ i ] )
{
bsW( 1, 1 );
}
else
{
bsW( 1, 0 );
}
}
for( i = 0; i < 16; i++ )
{
if( inUse16[ i ] )
{
for( j = 0; j < 16; j++ )
{
if( m_inUse[ i * 16 + j ] )
{
bsW( 1, 1 );
}
else
{
bsW( 1, 0 );
}
}
}
}
}
/*
* Now the selectors.
*/
bsW( 3, nGroups );
bsW( 15, nSelectors );
for( i = 0; i < nSelectors; i++ )
{
for( j = 0; j < m_selectorMtf[ i ]; j++ )
{
bsW( 1, 1 );
}
bsW( 1, 0 );
}
for( t = 0; t < nGroups; t++ )
{
int curr = len[ t ][ 0 ];
bsW( 5, curr );
for( i = 0; i < alphaSize; i++ )
{
while( curr < len[ t ][ i ] )
{
bsW( 2, 2 );
curr++;
/*
* 10
*/
}
while( curr > len[ t ][ i ] )
{
bsW( 2, 3 );
curr--;
/*
* 11
*/
}
bsW( 1, 0 );
}
}
/*
* And finally, the block data proper
*/
selCtr = 0;
gs = 0;
while( true )
{
if( gs >= m_nMTF )
{
break;
}
ge = gs + G_SIZE - 1;
if( ge >= m_nMTF )
{
ge = m_nMTF - 1;
}
for( i = gs; i <= ge; i++ )
{
bsW( len[ m_selector[ selCtr ] ][ m_szptr[ i ] ],
code[ m_selector[ selCtr ] ][ m_szptr[ i ] ] );
}
gs = ge + 1;
selCtr++;
}
if( !( selCtr == nSelectors ) )
{
panic();
}
}
private void simpleSort( int lo, int hi, int d )
{
int i;
int j;
int h;
int bigN;
int hp;
int v;
bigN = hi - lo + 1;
if( bigN < 2 )
{
return;
}
hp = 0;
while( m_incs[ hp ] < bigN )
{
hp++;
}
hp--;
for( ; hp >= 0; hp-- )
{
h = m_incs[ hp ];
i = lo + h;
while( true )
{
/*
* copy 1
*/
if( i > hi )
{
break;
}
v = m_zptr[ i ];
j = i;
while( fullGtU( m_zptr[ j - h ] + d, v + d ) )
{
m_zptr[ j ] = m_zptr[ j - h ];
j = j - h;
if( j <= ( lo + h - 1 ) )
{
break;
}
}
m_zptr[ j ] = v;
i++;
/*
* copy 2
*/
if( i > hi )
{
break;
}
v = m_zptr[ i ];
j = i;
while( fullGtU( m_zptr[ j - h ] + d, v + d ) )
{
m_zptr[ j ] = m_zptr[ j - h ];
j = j - h;
if( j <= ( lo + h - 1 ) )
{
break;
}
}
m_zptr[ j ] = v;
i++;
/*
* copy 3
*/
if( i > hi )
{
break;
}
v = m_zptr[ i ];
j = i;
while( fullGtU( m_zptr[ j - h ] + d, v + d ) )
{
m_zptr[ j ] = m_zptr[ j - h ];
j = j - h;
if( j <= ( lo + h - 1 ) )
{
break;
}
}
m_zptr[ j ] = v;
i++;
if( m_workDone > m_workLimit && m_firstAttempt )
{
return;
}
}
}
}
private void vswap( int p1, int p2, int n )
{
int temp = 0;
while( n > 0 )
{
temp = m_zptr[ p1 ];
m_zptr[ p1 ] = m_zptr[ p2 ];
m_zptr[ p2 ] = temp;
p1++;
p2++;
n--;
}
}
private void writeRun()
throws IOException
{
if( m_last < m_allowableBlockSize )
{
m_inUse[ m_currentChar ] = true;
for( int i = 0; i < m_runLength; i++ )
{
m_crc.updateCRC( (char)m_currentChar );
}
switch( m_runLength )
{
case 1:
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
break;
case 2:
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
break;
case 3:
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
break;
default:
m_inUse[ m_runLength - 4 ] = true;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)m_currentChar;
m_last++;
m_block[ m_last + 1 ] = (char)( m_runLength - 4 );
break;
}
}
else
{
endBlock();
initBlock();
writeRun();
}
}
private static class StackElem
{
int m_dd;
int m_hh;
int m_ll;
}
}
/*
* Copyright (C) The Apache Software Foundation. All rights reserved.
*
* This software is published under the terms of the Apache Software License
* version 1.1, a copy of which has been included with this distribution in
* the LICENSE.txt file.
*/
/**
* Base class for both the compress and decompress classes. Holds common arrays,
* and static data.
*
* @author Keiron Liddle
*/
interface BZip2Constants
{
int BASE_BLOCK_SIZE = 100000;
int MAX_ALPHA_SIZE = 258;
int MAX_CODE_LEN = 23;
int RUNA = 0;
int RUNB = 1;
int N_GROUPS = 6;
int G_SIZE = 50;
int N_ITERS = 4;
int MAX_SELECTORS = ( 2 + ( 900000 / G_SIZE ) );
int NUM_OVERSHOOT_BYTES = 20;
int[] RAND_NUMS = new int[]
{
619, 720, 127, 481, 931, 816, 813, 233, 566, 247,
985, 724, 205, 454, 863, 491, 741, 242, 949, 214,
733, 859, 335, 708, 621, 574, 73, 654, 730, 472,
419, 436, 278, 496, 867, 210, 399, 680, 480, 51,
878, 465, 811, 169, 869, 675, 611, 697, 867, 561,
862, 687, 507, 283, 482, 129, 807, 591, 733, 623,
150, 238, 59, 379, 684, 877, 625, 169, 643, 105,
170, 607, 520, 932, 727, 476, 693, 425, 174, 647,
73, 122, 335, 530, 442, 853, 695, 249, 445, 515,
909, 545, 703, 919, 874, 474, 882, 500, 594, 612,
641, 801, 220, 162, 819, 984, 589, 513, 495, 799,
161, 604, 958, 533, 221, 400, 386, 867, 600, 782,
382, 596, 414, 171, 516, 375, 682, 485, 911, 276,
98, 553, 163, 354, 666, 933, 424, 341, 533, 870,
227, 730, 475, 186, 263, 647, 537, 686, 600, 224,
469, 68, 770, 919, 190, 373, 294, 822, 808, 206,
184, 943, 795, 384, 383, 461, 404, 758, 839, 887,
715, 67, 618, 276, 204, 918, 873, 777, 604, 560,
951, 160, 578, 722, 79, 804, 96, 409, 713, 940,
652, 934, 970, 447, 318, 353, 859, 672, 112, 785,
645, 863, 803, 350, 139, 93, 354, 99, 820, 908,
609, 772, 154, 274, 580, 184, 79, 626, 630, 742,
653, 282, 762, 623, 680, 81, 927, 626, 789, 125,
411, 521, 938, 300, 821, 78, 343, 175, 128, 250,
170, 774, 972, 275, 999, 639, 495, 78, 352, 126,
857, 956, 358, 619, 580, 124, 737, 594, 701, 612,
669, 112, 134, 694, 363, 992, 809, 743, 168, 974,
944, 375, 748, 52, 600, 747, 642, 182, 862, 81,
344, 805, 988, 739, 511, 655, 814, 334, 249, 515,
897, 955, 664, 981, 649, 113, 974, 459, 893, 228,
433, 837, 553, 268, 926, 240, 102, 654, 459, 51,
686, 754, 806, 760, 493, 403, 415, 394, 687, 700,
946, 670, 656, 610, 738, 392, 760, 799, 887, 653,
978, 321, 576, 617, 626, 502, 894, 679, 243, 440,
680, 879, 194, 572, 640, 724, 926, 56, 204, 700,
707, 151, 457, 449, 797, 195, 791, 558, 945, 679,
297, 59, 87, 824, 713, 663, 412, 693, 342, 606,
134, 108, 571, 364, 631, 212, 174, 643, 304, 329,
343, 97, 430, 751, 497, 314, 983, 374, 822, 928,
140, 206, 73, 263, 980, 736, 876, 478, 430, 305,
170, 514, 364, 692, 829, 82, 855, 953, 676, 246,
369, 970, 294, 750, 807, 827, 150, 790, 288, 923,
804, 378, 215, 828, 592, 281, 565, 555, 710, 82,
896, 831, 547, 261, 524, 462, 293, 465, 502, 56,
661, 821, 976, 991, 658, 869, 905, 758, 745, 193,
768, 550, 608, 933, 378, 286, 215, 979, 792, 961,
61, 688, 793, 644, 986, 403, 106, 366, 905, 644,
372, 567, 466, 434, 645, 210, 389, 550, 919, 135,
780, 773, 635, 389, 707, 100, 626, 958, 165, 504,
920, 176, 193, 713, 857, 265, 203, 50, 668, 108,
645, 990, 626, 197, 510, 357, 358, 850, 858, 364,
936, 638
};
}
/**
* A simple class the hold and calculate the CRC for sanity checking of the
* data.
*
* @author Keiron Liddle
*/
class CRC
{
private static int[] CRC32_TABLE = new int[]
{
0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9,
0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005,
0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61,
0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9,
0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75,
0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011,
0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd,
0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039,
0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5,
0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81,
0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d,
0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49,
0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1,
0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d,
0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae,
0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072,
0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16,
0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca,
0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde,
0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02,
0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066,
0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e,
0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692,
0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6,
0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a,
0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e,
0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2,
0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686,
0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a,
0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637,
0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f,
0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53,
0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47,
0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b,
0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff,
0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623,
0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7,
0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b,
0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f,
0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7,
0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b,
0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f,
0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3,
0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640,
0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c,
0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8,
0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24,
0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30,
0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088,
0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654,
0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0,
0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c,
0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18,
0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4,
0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0,
0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c,
0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668,
0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4
};
private int m_globalCrc;
protected CRC()
{
initialiseCRC();
}
int getFinalCRC()
{
return ~m_globalCrc;
}
void initialiseCRC()
{
m_globalCrc = 0xffffffff;
}
void updateCRC( final int inCh )
{
int temp = ( m_globalCrc >> 24 ) ^ inCh;
if( temp < 0 )
{
temp = 256 + temp;
}
m_globalCrc = ( m_globalCrc << 8 ) ^ CRC32_TABLE[ temp ];
}
}